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PREFACE TO THE FIRST EDITION.

Foe some time past it has been felt that a gap existed between
the many excellent popular and non-mathematical works on As-
tronomy, and the standard treatises on the subject, which involve
high mathematics. The present volume has been compiled with
the view of filling this gap, and of providing a suitable text-book
for such examinations as those for the B.A. and the B.Sc. degrees of

the University of London.
It has not been assumed that the reader's knowledge of mathe-

matics extends beyond the more rudimentary portions of Geometry,
Algebra, and Trigonometry. A knowledge of elementary Dynamics
will, however, be required in reading the last three chapters, but
all dynamical investigations have been left till the end of the book,
thus separating dynamical from descriptive Astronomy.
The principal properties of the Sphere required in Astronomy

have been collected in the Introductory Chapter ; and, as it is

impossible to understand Kepler's Laws without a slight knowledge
of the properties of the Ellipse, the more important of these have
been collected in the Appendix for the benefit of students who have
not read Conic Sections.

All the more important theorems have been carefully illustrated

by woi'ked-out numerical examples, with the view of showing how
the various principles can be put to practical application. The
authors are of opinion that a far sounder knowledge of Astronomy
can be acquired with the help of such examples than by learning
the mere bookwork alone.

Feb. 1st, 1892.

PREFACE TO THE SECOND EDITION.

The first edition of Mathematical Astronomy having run out of

print in less than eight months, we have hardly considered it

advisable to make many radical changes in the present edition.

We have, however, taken the opportunity of adding several notes at

the end, besides answers to the examples, which latter will, we
hope, prove of assistance, especially to private students ; our readers

will also notice that the book has been brought up to date by the

inclusion of the most recent discoveries. At the same time we
hope we have corrected all the misprints that are inseparable from
a first edition. Our best thanks are due to many of our readers for

their kind assistance in sending us corrections and suggestions.

Nov. 1st, 1892.
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INTRODUCTOHY CHAPTER.

ON SPHERICAL GEOMETRY.
Properties of the Sphere which will he referred to in the course of the

Text.

(1) A Sphere may be defined as a surface all points on which are
at the same distance from a certain fixed point. This point is the
Centre, and the constant distance is the Radius.

(2) The surface formed hy the revolution of a semicircle about
its diameter is a sphere. For the centre of the semicircle is kept
fixed, and its distance from any point on the surface generated -will

be equal to the radius of the semicircle.

Fig. 1.

(3) Let PqQP' be any position of the revolving semicircle whose
diameter PP' is fixed. Let OQ be the radius perpendicular to PP',

Cq any other line perpendicular to PP', meeting the semicircle in

q. (We may suppose these lines to be marked on a semicircular disc of

cardboard.) As the semicircle revolves, the lines OQ, Oqwill sweep
out planes perpendicular to PP', and the points Q, q will trace out

in these planes circles HQRK, hqrh, of radii OQ, Cq respectively.

From this it may readily be seen that Every plane section of a
sphere is a circle.

ASTRON, B
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Definitions.

(4) A great circle of a sphere is the circle in whioh it is cut by
any plane passing through, the centre (e.g., HQRK, PqQP' or PrBP).
A small circle is the circle in which the sphere is cut by any plane
not passing through the centre (e.g., hqrk),

(5) The axis of a great or small circle is the diameter of the
sphere perpendicular to the plane of the circle. The poles of the
circle are the extremities of this diameter. (Thus, the line PP' is

the axis, and P, P' are the poles of the circles HQK and hqk).

(6) Secondaries to a circle of the sphere are great circles passing

through its poles. (Thus, PQP' and PRP' are secondaries of the

circles HQK, hqJc).

Fig. 2.

(7) The angular distance between two points on a sphere is

measured by the arc of the great circle joining them, or by the angle

which this arc subtends at the centre of the sphere. Thus, the dis-

tance between Qand R is measuredeitherby the arc QJJ, or bythe angle

QOB. Since the circular measure of Z QOB = (arc QR) -^ (radius of

sphere), it is usual to measure arcs of great circles by the angles

which they subtend at the centre. This remark does not apply to

small circles.

(8) The angle between two great circles is the angle between
their planes. Thus, the angle between the circles PQ, PR is the angle

between the planes PQP', PRP'. It is called " the angle QPR."

(9) A spherical triangle is a portion of the spherical surface

bounded by three arcs of great circles. Thus, in Fig. 2, PQB is a

spherical triangle, but Pqr is not a spherical triangle, because qr is

not an arc of a great circle. We may, however, draw a great circle

passing through q and r, and thus form a spherical triangle Pqr.
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Properties of Great and Small Circles.

(10) All points on a small circle are at a constant (angular)
distance from the pole.

For, as the generating semicircle revolves about PP', carrying q
along the small circle hk, to r, the arc Pq = arc Pr, and Z POq = I POr.
The constant angular distance Pq is called the spherical, or

angular radius of the small circle. The pole P is analogous to the
centre of a circle in plane geometry.

(11) The spherical radius of a great circle is a quadrant, or.

All points on a great circle are distant 90° from its poles.

For, as Q, by revolving about PP', traces out the great circle

HQRK, we have Z POQ = L POR = 90°, and therefore, PQ, PR are
quadrants.

(12) Secondaries to any circle lie in planes perpendicular to

the plane of the circle.

For PP' is perpendicular to the planes of the circles HQK, hqh,

therefore any plane through PP', such as PQP' or PBP', is also per-

pendicular to them.

(13) Circles which have the same axis and polee lie in parallel

planes. For the planes HQK, hqk are parallel, both bping perpen-
dicular to the axis PP'. Such circles are often called parallels.

(14) If any number of circles have a common diameter, their

poles all lie on the great circle to which they are secondaries, and
this great circle is a common secondary to the original circles.

For if OA is the axis of the circle PQP', then OA is perpendicular

to POP'. Hence, if the circle PQP' revolves about PP', A traces out
the great circle HQRK, of which P, P' are poles. We likewise see that

(15) If one great circle is a secondary to another, the latter is

also a secondary to the former.
This is otherwise evident, since their planes are perpendicular.

(16) The angle between two great circles is equal to

(i.) The angle between the tangents to them at their points
of intersection

;

(ii.) The arc which they intercept on a great circle to which
they are both secondaries

;

(iii.) The angular distance between their poles.

Let Pt, Pu be the tangents at P to the circles FQ, PR, and let J, B
be the poles of the circles. If we suppose the semicircle PQP' to

revolve about PP' into the position PRP', the tangent at P will

revolve from Pt to Pu, the radius perpendicular to OP will revolve
from OQ to OR, and the axis will revolve from OA to OB. All these
lines will revolve through an angle equal to the angle between
the planes PQP', PRP', and this is the angle QPR between the
circles (Def. 8). Hence,

Angle between circles PQ, PR = ItPu = I QOR = Z AOB.
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(17) The arc of a small circle subtending a given angle at the

pole is proportional to the sine of the angular radius.

Let qr be the arc of the small circle hqrh, subtending Z qPr at P,

and let be the centre of the circle. Evidently IqCr^l QOB
(since Cq, Gr are parallel to OQ, OR). Hence, the arcs qr, QB are

proportional to the radii Cq, OQ,

.
&ro_qr_ ^ £g, ._^ QL = sin POq = sin Pq.

" arcQR OQ Oq

But QR is the arc of a great circle subtending the same angle at the

pole r, hence the arc qr is proportional to sm Pq, as was to be shown.

Since qQ = 90'^- Pg, therefore sin Pq = cos qQ, so that the arc qr is

proportional to the cosine of the angular distance of the small circle

qr from the parallel great circle QR.

Fig. 3. Fig. 4.

(18) Comparison of Plane and Spherical Geometry.

It may be laid down as a general rule that great circles and small

circles on a sphere are analogous in their respective properties to

straight lines and circles in a plane. Thus, to join two points on a

sphere means to draw the great circle passing through them.

Secondaries to a great circle of the sphere are analogous to per-

pendiculars on a straight line. The distance of a point from any
great circle is the lengtli of the arc of a secondary drawn from the

point to the circle. Thus, rR is the distance of the point r from th©

great circle IIQRK,
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On Spherical Triangles.

(19) Parts of a Spherical Triangle.—A spherical triangle, like a

plane triangle, has six parts, viz., its three sides and its three angles.

The sides are generally measured by the angles they subtend at the

centre of the sphere, so that the six parts are all expressed as angles.

Any three given parts suffice to determine a spherical triangle,

but there are certain " ambiguous cases " when the problem admits

of more than one solution. The formulae required in solving

spherical triangles form the subject of Spherical Trigonometry,

and are in every case different from the analogous formulae in Plane

Trigonometry. There is this further difference, tbat a spherical

triangle is completely determined if its three angles are given.

Thus, two spherical triangles will, in general, be equal if they

have the following parts equal :

—

(i.) Three sides.

(ii.) Two sides andincluded angle.

(iii.) Two sides and one opposite

angle

(iv.) Three angles,

(v.) Two anglesand adjacent side,

(vi.) Two angles and one opposite

side.

Cases (iii.) and (vi.) may be ambiguous.

(20) Eight-angled Triangles.—If one of the angles is a right

angle, two of the remaining five parts will determine the triangle.

(21) Triangle with two right angles.—The properties of a
spherical triangle, such as PQB, Fig. 3, in which one vertex P is

the pole of the opposite side QB, are worthy of notice. Here two
of the sides, PQ, PR, are quadrants, and two angles Q, B are right

angles. The third side QB is equal to the opposite angle QPB.

(22) Triangle with three right angles.—If, in addition, the angle
QPB is a right angle (Fig. 4), QB will be a quadrant. The triangle

FQB will, therefore, have all its angles right angles, and all its sides

quadrants, and each vertex will be the pole of the opposite side.

The planes of the great circles forming the sides, are three planes
through the centre mutually at right angles, and they divide the
surface of the sphere into eight of those triangles; thus the area of

each triangle is one-eighth of the surface of the sphere.

(23) The three angles of a spherical triangle are together
greater than two right angles.

[For proof, see any text-book on Spherical Geometry.]

(24) If the sides of a spherical triangle, when expressed as angles,
are Very small, so that its linear dimensions are very small com-
pared witli the radius of the sphere, the triangle is very approxi-
mately a plane triangle.

Thus, although the Earth's surface is spherical, a triangle whose
sides are a few yards in length, if traced on the Earth, will not be
distinguishable from a plane triangle. If the sides are several
miles in length, the triangle will still be very nearly plane.
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(25) Any two sides of a spherical triangle are together
greater than the third side. For if we consider the plane angles
whicli the sides subtend at the centre of the sphere, any two of

tliese are together greater than the third, by Euclid XI., 20.

(26) The following application of (25) is of great use in astronomy,
antd is tiTialogoTia to, Euclid III., 7, 8.

Xet AHBK be any given great or small circle whose pole is P,

Zthjry other giyen point on the sphere, and let the great circle ZP
ruES't the giyen circle in the points A, B. Then A, B are the two
points on the given circle whose distances from Z are greatest and
least rBspectively..

Tor let R be any other point on the circle. Join ZH, HP.
Then, in spherical A ZPE, ZP + PH> ZH. But PH = PA;

.'. ZP + PA>ZH,
i.e., ZA>ZH.

Also, if Z is On the opposite side of the circle to P, then
ZH + PH>PZi .\ZH + PB>PZi .\ZE>PZ-PB,

i.e., ZH>ZB.

If Z' be a point on the same side of the circle as P, then PZ' + Z'H

>PH. But PH = PB. .•.PZ'^Z'H>PB.
.: Z'H>PB-PZ',

i.e., Z'H>Z'B, as before.

Hence, A is further from Z, Z', and B is nearer to Z, Z', than any

other point on the circle.

(27) If If, K are the two points on the circle equidistant from Z,

the spherical triangles ZPH, ZPK have ZP common, ZH = ZK (by

hypothesis!, and PH = PK [by (10)], hence they are equal in all

respects ; thus Z ZPH = Z ZPK, and Z PZH = Z PZK.
Hence PH, PK are equally inclined to PB, as are also ZH, ZK.

Similar properties hold in the case of the point Z'. Tliese pro-

perties are of frequent use.
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CHAPTEE L

THE CELESTIAL SPHERE.
Section I.

—

Definitions—Systems of Co-ordinates.

1 . Astronomy is the science whicli deals with the celestial

bodies. These comprise all the various bodies distributed

throughout the universe, such as the Earth (considered as a

whole), the Sun, the Planets, the Moon, the comets, the fixed

stars, and the nebulae. It is convenient to divide Astronomy
into three different branches.

The first may be called Descriptive Astronomy. It is

concerned with observing and recording the motions of the

various celestial bodies, and with applying the results of

such observations to predict their positions at any subsequent

time. It includes the determination of the distances, and the

measurement of the dimensions of the celestial bodies.

The second, or Gravitational Astronomy, is an appli-

cation of the principles of dynamics to account for the motions

of the celestial bodies. It includes the determination of their

masses.

The third, called Physical Astronomy, is concerned

with determining the nature, physical condition, temperature,

and chemical constitution of the celestial bodies.

The first branch has occupied the attention of astronomers

in all ages. The second owes its origin to the discoveries of

Sir Isaac Newton in the seventeenth century ; while the

third branch has been almost entirely built up in the present

century.

In this book we shall treat exclusively of Descriptive and
Gravitational Astronomy.
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2. The Celestial Sphere.—On observing tlie stars it is

not difficult to imagine tliat they are bright points dotted

abont on the inside of a hollow spherical dome, whose centre

is at the eye of the observer. It is impossible to form any
direct conception of the distances of snch remote bodies ; all

we can see is their relative directions. Moreover, most
astronomical instruments are constructed to determine only

the directions of the celestial bodies. Hence it is important

to have a convenient mode of representing directions.

The way in which this is done is shown in Figure 6. Let

be the position of any observer, A, B, C, &c., any stars or

other celestial bodies. About 0, as ccfntre, describe a sphere

with any convenient length as radius, and let the lines joining

to the stars A, B, (7 meet this sphere in a, h, c respectively.

Then the points «, J, c will represent, on the sphere, the

directions of the stars A^ B^ C, for the lines joining these

points to will pass tlirough the stars themselves. In this

manner we obtain, on the sphere, an exact representation of

the appearance of the heavens as seen from 0. Such a

sphere is called the Celestial Sphere.
This sphere may be taken as the dome upon which the stars

appear to lie. But it must be carefully home in mind that

the stars do not actually lie on a sphere at all, and that they

are only so represented for the sake of convenience.
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3. Use of the Globes.—The representation of directions

of stars by points on a sphere is well exemplified in the old-

fashioned star globes. Such a globe may be nsed as the

observer's celestial sphere ; but it must be remembered that

the directions of the stars are the lines joining the centre to

the corresponding points on the sphere ; for in every case the

observer is supposed to be at the centre of the celestial

sphere.

The properties given in the Introduction on Spherical Geo-

metry are applicable to the geometry of the celestial sphere.

A knowledge of them will be assumed in what follows.

4. Angular Distances and Angular Magnitudes.—
Any plane through the observer will be represented on the

celestial sphere by a great circle. The arc of the great circle

ah (rig. 6) represents the angle a Ob or A OB which the stars

A, B subtend at 0. This angle is generally measured in

degrees, minutes, and seconds, and is called the angular
distance between the stars. This angular distance must
not be confused with their actual distance AB. In the same

way, when we are dealing with a body of perceptible dimen-

sions, such as the Sun or Moon {BF, Pig. 6), we shall define

its angular diameter as the angle BOF^ subtended by a

diameter at the observer's eye. This angular diameter is

measured by the arc df of the celestial sphere, that is, by the

diameter of the projection of the body on the celestial sphere.

From the figure it is evident that

6d OB'

Since BF is the actual linear diameter of the body, mea-
sured in units of length, the last relation shows us that the

angular diameter [df) of a body varies directly as its linear

diameter BF, and inversely as OB, the distance of the body
from the observer's eye.

As the eye can only judge of the dimensions of a body
from its angular magnitude, this result is illustrated by the

fact that the nearer an object is to the eye the larger it looks,

and vice versa. Thus, if the distance of the object be doubled,

it will only look half as large, as may be easily verified.
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5. The Directions of the Stars are very approxi-
mately independent of the Observer's Position on
the Earth.
TMs is simply a consequence of the enormously great dis-

tances of all the stars from the Earth. Thus,
let X (rig. 7) denote any star or other celestial

body, /S, ^two different positions of the observer.

If the distance 8E be only a very small fraction

of the distance Sx, the angle Ex8 will be very
small, and this angle measures the difference be-

tween the directions of x as seenfrom ^and from 8.

In illustration, if we observe a group of objects

a mile or two off, and then walk a few feet in. any
direction, we shall observe no perceptible change
in the apparent directions or relative positions of the objects.

If Ex be drawn parallel to 8x, the angle xEx will be

equal to Ex8, and will therefore be very small indeed.

Hence, Ex will very nearly coincide in direction with Ex'.

Thus, considering the vast distances of the stars, we see that

The lines joining a Star to different points of the
Earth may he considered as parallel.*

The stars will, therefore, always be represented by the

same points on a star globe, or celestial sphere, no matter

what be the position of the observer. The great use of the

celestial sphere in astronomy depends on this fact.

6. Motion of Meteors.—The projection of bodies on the

celestial sphere is well illustrated by the apparent motion

of a swarm of meteors. Where such a swarm is moving
uniformly, all the meteors describe (approximately) parallel

straight lines. If we draw planes through these lines and

the observer, they will intersect in a common line, namely,

the line through the observer parallel to the direction of the

common motion of the meteors. The planes will, therefore,

cut the celestial sphere in great circles, having this line as

their common diameter. These great circles represent the

apparent paths of the meteors on the celestial sphere. Tlie

paths appear, therefore, to radiate from a common point,

namely, one of the extremities of this diameter.

This point is called the Radiant, and by observing its

position the direction of motion of the meteors is determined.

* This is not true in the case of the Moon.
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7. Zenith and Nadir.—Horizon.— If, through the
ohserver, a line be drawn in the direction in which gravity

acts {i.e., the direction indicated by a plumb-line), it will meet
the celestial sphere in two points. One of these is vertically

above the observer, and is called the Zenith; the other is

vertically below the observer, and is called the Nadir. (Fig.

6, and Z, N, Fig. 8.)

If the plane through the observer parallel to the surface

of a liquid at rest be produced, it will cut the celestial

sphere in a great circle. This great circle is called the

Celestial Horizon. (Fig. 6, and sEnW, Fig. 8.)

It is proved in Hydrostatics that the surface of a liquid at

rest is a plane perpendicular to the direction of gravity.

Hence, the celestial horizon is the great circle whose poles

are the zenith and nadir. "We might have defined the

horizon by this property.

From the above definition, it is evident that, to an observer

whose eye is close to the surface of the ocean, the celestial

horizon forms the boundary of the visible portion of the

celestial sphere. On land, however, the boundary, or visible

horizon (as it is called), is always more or less irregular,

owing to trees, mountains, and other objects.

8. Diurnal Motion of the Stars.
sky at different intervals during

the night, we shall find that the

stars always maintain the same
configurations relative to one

another, but that their actual

situations in the sky, relative to

the horizon, are continually

changing. Some stars will set

in the west, others will rise in

the east. One star which is

situated in the constellation called

the " Little Bear," remains almost Fig. 8.

fixed. This star is called Polaris, or the Pole Star. All the

other stars describe on the celestial sphere small circles

(Fig. 8) having a common pole P \eij near the Pole Star,

and the revolutions are performed in the same period of time,

namely, about 23 hours 56 minutes of our ordinary time.
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9. Celestial Poles, Eqnator, and Meridian.— The
common motion of the stars may most easily be conceived by
imagining tliem to be attached to the surface of a sphere
which is made to revolve uniformly about the diameter PP'.

The extremities of this diameter are called the Celestial
Poles. That pole, P, which is above the horizon in northern
latitudes is called the Nortli Pole, the other, P', is called

the South Pole.
The great circle, UQRJF, having these two points for its

poles, is called the Celestial Equator. It is, therefore, the

circle which would be traced out by the diurnal path of a
star distant 90° from either pole.

The Meridian is the great circle {PZP'N, Pig. 9) passing

through the zenith and nadir and the celestial poles. It cuts

both the horizon and equator at right angles [by Spher.

Geom. (12), since it passes through their poles].
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10. The Cardinal Points.— The East and West
Points {E, TF, Fig. 9) are the points of intersection of the

equator and horizon. The ITortli and South Points

(^, 8) are the intersections of the meridian with the horizon.

Verticals.—Secondaries to the horizon, i.e., great circles

through the zenith and nadir, are called Vertical Circles,

or, briefly, Verticals. Thus, the meridian is a vertical.

The Prime Vertical is the vertical circle {ZENW) passing

through the east and west points.

Since P is the pole of the circle QERW, and ^is the pole

of nEsJF, therefore E, W are the poles of the meridian

PZP'N. Hence the horizon, equator, and prime vertical

which pass through E, W, are all secondaries to the meridian
;

they therefore all cut the meridian at right angles.

11. Annual Motion of the Sua.—The Ecliptic.—
The Sun, while participating in the general diurnal rotation

of the heavens, possesses, in addition, an independent

motion of its own relative to the stars.

Imagine a star globe worked by clockwork so as to revolve

about an axis pointing to the celestial pole in the same peri-

odic time as the stars. On such a moving globe the directions

of the stars will always be represented by the same points.

During the daytime let the direction of the Sun be marked on

the globe, and let this process be repeated every day for a year.

We shall thus obtain on the globe a representation of the

Sun's path relative to the stars, and it will be found that

—

(i.) The Sun moves from west to east, and returns to the

same position among the stars in the period called a year
;

(ii.) The relative path on the celestial sphere is a great

circle, inclined to the equator at an angle of about 23° 27|'.

This great circle {CtL ^, Fig. 9) is called the Ecliptic.

We may, therefore, briefly define the ecliptic as the great

circle which is the trace, on the celestial sphere, of the Sun's

annual path relative to the stars.

The intersections of the ecliptic and equator are called

Equinoctial Points. One of them is called the Pirst
Point of Aries ; this is the point through which the Sun
passes when crossing from south to north of the equator, and
it is usually denoted by the symbol T • The other is called

the First Point of Libra, and is denoted by the symbol =^,
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12. Coordinates.—In Analytical Geometry, the position

of a point in a plane is defined by two coordinates. In like

manner, the position of a point on a sphere may be defined by
means of two coordinates. Tims, the position of a place on
the Earth is defined by the two coordinates, latitude and
longitude. For fixing the positions of celestial bodies, the

following different systems of coordinates are used.

13. Altitude or Zenith Distance and Azimuth.—Let
rig. 10 represent the celestial sphere, seen from overhead, and
let X be any star. Draw the vertical circle Zx^. Then the

position of x may be defined by either of the following pairs

of coordinates, which are analogous to the Cartesian and
polar coordinates of a point in a plane respectively :

—

{a) The arc -sX and the arc Xa;

;

(i) The arc Zx and the angle sZx.

Practically, however, the two systems are equivalent

;

since Z is the pole of sX, Z^= 90°, therefore

Zx = 90°—ofX, and ano-le sZx = arc sX.

for.

The Altitude of a star (Xx) is its angular distance from

the horizon, measured along a vertical.

The Zenith Distance (abbreviation, Z.D.) is its angular

distance fromthezenith (^a;), orthecomplementof thealtitudt.

The Azimuth {sX or sZx) is the arc of the horizon inter-

cepted between the south point and the vertical of the star,

or the angle which the star's vertical makes with the meridian.



N., N. byE., N.N.E., N.E

E., E. byS., E.S.E., S.E.

S., S. by W. S.S.W., S.W,

W., w byN., W.N.W. N.W
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*14. Points of the Compass.—In practical applications of Astro-

nomy to navigation, it is usual to measure the azimuth in "points"

and " quarter points " of the compass. TJie dial plate of a mariner's

compass is divided into 32 points, by repeatedly bisecting the right

angles formed by the directions of the four cardinal points. Thus
each point represents an angle of Hi degrees. The points are again

subdivided into " quarter points " of 2i| degrees. Starting from the

north and going round towards the east, the various points are denoted

as follows :

—

byN., N.B., N.E. byE., E.N.E., E. by N.

byE., S.E., S.E. by S., S.S.E., S. byE.

by S., S.W., S.W. by W., W.S.W , W. by S.

N.W. by W., N.W., N.W. byN., N.N.W., N. by W.

The quarter points are denoted thus :—E.N.B. ^ E. means one

quarter point to the eastward of E.N.E., that is, 6^ points, or
70° 18' 45", from the north point, taken in an easterly direction.

So, too, S.S.W. i W. means 2^ points, or 28° 7' 30' , measured from
the south point westwards.

15. Polar Distance, or Declination, and Hour Angle.—^Troin the pole P; draw through x the great circle PxM; this

circle is a secondary to the equator EQ W.
Then we may take for the coordinates of x the arc Px and

the angle sPx. Or we may take the arc xM, which is the

complement of Px, and the arc QM, which = angle QPx.
The North Polar Distance of a star (abhre-viation,

N.P.D.) is its angular distance {Px) from the celestial pole.

The Declination (abhreviation, Bed.) is the angular

distance from the equator {x3P), measured along a secondary,

and is, therefore, the complement of the N.P.D, \
The great circle PxM through the pole and the star is

called the star's Declination Circle.

The Hour Angle of the star (ZPx) is the angle which
the star's declination circle makes with the meridian. >

The declination may be considered positive or negative,

according as the star is to the north or south of the equator,

but it is more usual to specify this by the letter ]^. or S., as

the case may be, and this is called the name of the declination.

The hour angle is generally measured from the meridian

towards the west, and is reckoned from 0° to 360°.

Either the declination and hour angle or the N.P.D. and

hour angle may be taken as the two coordinates of a star.
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10. Declination and Right Ascension.—The position

of a celestial body is, however, more frequently defined by
its declination and rig'lit ascension.

The declination has been already defined, in § 15, as the

angular distance of the star from the equator, measured along

a secondary. {x3f^ Fig. 11.)

The Right Ascension (R.A.) is the arc of the equator

intercepted between the foot of this secondary and the First

Point of Aries. Thus, tM, Fig. 11, is the R.A. of the star a?.

The R.A. of a star is always measured from T eastwards

reckoning from 0° to 360°. Thus the star w Piscium, whose

declination circle cuts the equator 1° 34' 18" west of T, has

the K.A. 360°- 1° 34' 18", or 358° 25' 42".

^ "ii:
-^

Iz'

-"" L

Fig. 11.

17. Celestial Latitude and Longitude.—The position
of a celestial body may also be referred to the ecliptic instead
of the equator.

The Celestial Latitude is the angular distance of the
body from the ecliptic, measured along a secondary to \h.<^

ecliptic. (iZr, Fig. 11.) .

The Celestial Longitude is the arc of the ecliptic inter-

cepted between this secondary and the first point of Aries,

measured eastwards from T- {tH^ Fig. 11.)
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18. Latitude of the Observer.—The celestial latitude

and longitude, defined in the last paragraph, must not be
confounded "svith the latitude and longitude of a place on the

Earth, as there is no connection whatever between them.

The Latitude of a place is the angular distaiice of its

zenith from the equator, measured along the meridian.

Thus, in Fig. 11, ZQ is the latitude of the observer.

Since FQ = nZ= 90°; .-. ZQ = wP, or in other words,

The latitude of a place is the altitude of the Celestial Pole.

The complement of the latitude is called the Colatitude.
Hence, in Fig. 11, PZ is the colatitude of the observer,

and is the aiigular distance of the zenith from the pole.

In tins book tlie latitude of an observer will generally be
denoted by the symbol I, and the colatitude by <?.

The longitude of a place will be defined in Chapter III.

19. Obliquity of the Ecliptic.—The inclination of the
ecliptic to the equator is called the Obliquity. In Fig. 11,

Qt 6' is the obliquity. As stated in § 11, this angle is about
23° 27.}'. We shall generally denote the obliquity by /.

20. Advantages of the Different Coordinate
Systems.—The altitude and azimuth of a celestial body
indicate its position relative to objects on the Earth. Owing,
however, to the diurnal motion, they are constantly changing.

The iST.P.D. and hour angle also serve to determine the

star's position relative to the earth, and have this further

advantage, that the N.P.D. is constant, while the hour angle

increase* at a uniform rate.

Since the equator and first point of Aries partake of the
common diurnal motion of the stars, the declination and right

ascension of a star are constant. These coordinates are, there-

fore, the most suitable for tabulating the relative positions of

the various stars on the celestial sphere.

The celestial latitude and longitude of a celestial body are

also unaffected by the diurnal motion. They are most useful in

defining the positions of the Sun, Moon, planets, and comets,

for the first always moves in the ecliptic, while the paths
described by the others are always very near the ecliptic.

21. Recapitulation.—For the sake of convenient refer-

ence, we give on the next page a list of all the definitions of

this chapter, with references to Figs. 11, 12.

ASTRON. c
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Theik Poles.

Zenith, Z; ;N"adir, Z'

.

North Pole, P ; South Pole, P'

.

East Point, E\ West Point, W.
iN'orth Point, n ; South Point, s.

Ecliptic, T C^hL ; Equinoctial Points, T^ ^^ viz. :—Eirst

Point of Aries, T , and Eirst Point of Libra, .ih ; Vertical of

Star, ZxX ;
Declination Circle of Star, Fxl£.

Great Circles.

Horizon, nE^W.
Equator, EQWR.
3Ieridian, ZsZ'n.

rrime Vertical, ZEZ'W.

Z'

Fig. 12.

COORDII^ATES.

'Altitude, Xx
;

or Zenith Distance, Zx.

I^orth Polar Distance, Fx,

Declination, Mx.
'Celestial Latitude, B.x.

Azimuth, sX = bZx.

Hour Angle, QM ^ ZPx,
Right Ascension, tM.
Celestial Longitude,- T^T.

Other Angles. — Obliquity of Ecliptic (/) = Ct Q-

Observer's Latitude {I) = ZQ = nP, Colatitude (c) = PZ.
Notice that the circles on the remote side of the celestial sphere

are dotted.
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Section II. The Diurnal Rotation of the Stars.

22. Sidereal Day and Sidereal Time.—A Sidereal
Day is the period of a complete revolution of the stars about •

the pole relative to the meridian and horizon. Like the

common day it is divided into 24 hours (h. ) , and these are

subdivided into 60 minutes (m;) of 60 seconds (s.) each.

The sidereal day commences at " Sidereal Noon," i.e.., the

instant when the first point of Aries crosses the meridian.

The Astronomical Clock, which is the clock used in

observatories, indicates sidereal time. The hands should

indicate Oh. Om. Os. when the first point of Aries crosses the

meridian, and the hours are reckoned from Oh. up to 24h.,

when T again comes to the meridian and a new day begins.

From the facts stated in § 8, it appears that the sidereal

day is about 4 minutes shorter than the ordinary day. The
stars are observed to revolve about the pole at a perfectly

uniform rate, so that the sidereal day is of invariable length,

and the angles described by any star about the pole are pro-

portional to the times of describing them. Thus, the hour

angle of a star (measured towards the. west) is proportional

to the interval of sidereal time that has elapsed since the star

was on the meridian.

Kow, in 24 sidereal hours the star comes round again to

the meridian, after a complete revolution, the hour angle

having increased from 0"" to 360°. Hence the hour angle in-

creases at the rate of lb" per hour. Hence, also, it increases
15' per minute, or 15" per second.

The hour angle of a star is, for this reason, generally

measured by the number of hours, minutes, and seconds of

sidereal time taken to describe it. It is then said to be

expressed in time. Thus,

The hour angle of a star, when expressed in time-
is the interval of sidereal time that has elapseu
since the star was on the meridian.

In particular, since the instant when T is on the meridian

is the commencement of the sidereal day, we see that

The sidereal time is the hour angle of the first

point of Aries when expressed in time.



14 ASTRONOMY.

23. To reduce to angtilar measure any angle ex-

pressed in time,—3Iuliiply hy \b. The hours, inhiutes, and

seconds of time will thus he reduced to degrees, mimites, and

seconds of angle.

Conversely, to reduce to time from angular measure
we must divide ly 15, and for degrees, minutes, and seconds,

write hours, minutes, and seconds.

Examples.—1. To find, in angular measure, the hour angle of a

star at 15h. 21m. 50s. of sidereal time after its transit. The process

stands thus

—

15 21 50
15

230 27 30
.*. the angular measui-e of the hour angle is 230° 27' 80"

2. To find the sidereal time required to describe 230° 27' £0"

(converse of Ex. 1).

15 ) 230 27 30

15 21 50 ;
.-. required time= 15h. 21m. 60s.

24. Transits.—The passage of the star across the meri-

dian is called its Transit.
Let X be the position of any star in transit (Fig. 13).

The star's E.A. = r Q or tPQ = hour angle of T
= sidereal time expressed in angle.

Hence, the right ascension of a star, when ex-

pressed in time, is equal to the sidereal time of its

transit.
In practice the R,A. of a star is always expressed in time.

Thus, the R.A. of a Lyrse is given in the tables as

18h. 33m. 14-8s., and not as 278° 18' 42".
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Again, let z be tlie meridian zenith distance Zx, considered

positive if the star transits north of the zenith, d the star's

north declination Qx, and I the north latitude QZ. We
have evidently

Qx= QZ+Zx)
d = l-{-z\

or (star's N". decl.)

= (lat. of observer) + (star's meridian Z.D.)

This formula will hold universally if declination, latitude,

and zenith distance are considered negative when south.

Hence the R.A. and decl. of a star may he found hy ohserving

its sidereal time of transit and its meridian Z.D.^ the latitude of

the ohservatory heing known.

Conversely, if the R.A. and decl. of a star are known, we
can, by observing its time of transit and meridian Z.D., deter-

mine the sidereal time and the latitude of the observatory.

By finding the sidereal time we may set the astronomical

clock.

A star whose R.A» and decl. have been tabulated, is called

a known star.

In Chapter II. we shall describe an instrument called the

Transit Circle, which is adapted for ob>er^-ing the times of

transit and meridian zenith distances of celestial bodies.

25. General Relation between R.A. and hour
angle.—Let x^ (I'ig. 13) be any star not on the meridian.

Then
z QPx^ = z QPr— z tPx, = z QPr-rM]

hence, if angles are expressed in time,

(star's hour angle) = (sidereal time) — (star's R.A.).

Hence, given the R.A. and decl. of a star, we can find its hour
angle and ^.P.D. at any given sidereal time, and by this means
determine the star's position on the observer's celestial sphere.

Or we can construct the star's position thus—On the equator,

in the westward direction from Q, measure off QT equal to

the sidereal time (reckoning 15'' to the hour). Trom T east-

wards, measure T-^f equal to the star's 11. A.; and from M, in

the direction of the pole, measure off JIx^ equal to the star's

declination. We thus find the star x^.
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*26. Transformations.—If the E.A. and decl. of a star are

given, its celestial latitude and longitude may be found, and vice

verso ; but the calculations require spherical trigonometry. The
process is analogous to changing the direction of the axes through

an angle i, in plane . coordinate geometry. Again, the Z.D and
azimuth may be calculated from the N.P.D. and hour angle, by
solving the triangle ZPx^ We know the colatitude PZ, Pa'i and
Z ZPxi, and we have to determine Zxi and Z QZxj (— ISQP—PZvi).
In the last article we showed how to find the hour angle in

terms of the R.A., or vice versd, the sidereal time being known.
Hence we see that, given the coordinates of a star referred to one

system, its coordinates referred to any other of the systems can bo

calculated at any given instant of sidereal time.

27. Culmination and Southing of Stars.—A celestial

body is said to culminate when its altitude is greatest or

least.

Since the fixed stars describe circles about the pole, it

readily follows, from Spherical Geometry (26), that a star

attains its greatest orleast zenith distance Avhen on the meridian,

and, therefore, that its culmination is the same as its transit.

This is not strictly the case with the Sun, because, owing to

its independent motion, its polar distance is not constant
;

hence it does not describe strictly a small circle about the pole.

When a star transits S. of the zenitli it is said to south.

28. Circumpolar Stars.—A Circumpolar Star at any

place is a star whose polar distance is less than the latitude

of the place. Its declination must, therefore, be greater

than the colatitude.

On the meridian let JPx and Px' be measured, each equal to

the N'.P.D. of such a star (Fig. 14), Then x and x' will be

the positions of the star at its transits. Since Px < Pn, both

x' and X will be above n. Hence, during a sidereal day a cir-

cumpolar star will transit twice, once above the pole (at x)

and once below the pole (at ar'), and both transits will be

visible. The two transits are distinguished as the upper
and lower culminations respectively, and they succeed one

another at intervals of 12 sidereal hours {amec xPx' = 180"*).

The altitude of the star is greatest at upper, and least at

lower culmination, as may easily be seen from Sph. Geom.

(26) by considering the zenith distances. Hence the altitude

is never less than 7ix, and the star is always above the horizon.
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Since nx—nP = Fx = Px = nP—nx\
nP = \ (nx-{-nx')

;

that is,

The observer's latitude is Iialf the snm of the
altitudes of a circumpolar star at upper and lower
culminations.

Also, Px = ^ \7ix— nx')
;

that is.

The Star's N.P.r*. is half the difference of its.

two meridian altitudes.

These results -will require modification if the upper culmi-

nation takes place south of the zenith as at S. The meridian

altitude will then he measured by sS, and not nS. Here,

nS = 180°— S/S, and we shall, therefore, have to replace the

altitude at upper culmination by its supplement.

South Circumpolar Stars.—If the south polar dis-

tance of a star is less than the north latitude of the observer,

the star will always remain helow the horizon, and will,

therefore, be invisible. Such a star is called a South Cir-

cumpolar Star.

Example.—The constellation of the Southern Cross (Crux)
is invisible in Europe, for its declination is 62' 30' *S' ; there-

fore its south polar distance is 27° 30', and it will, therefore,^

not be visible in north latitudes higher than 27° 30'.
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29. Rising, Southing, and Setting of Stars.—If the

!N. and S. polar distances of a star are both greater than the
latitude, it Avill transit alternately above and below the

horizon. This shows that the star will be invisible during a

certain portion of its diurnal course. Astronomically, the

star is said to rise and set when it crosses the celestial

horizon.

Let b,h'he the positions of any star when rising and setting

respectively.

In the sphoricnl triangles Pnh, rnh\

Fh = FV (each being the star's N.P.D.),

right Z Fnh = right Z FnV

,

and Fn is common.

Hence the triangles are equal in all respects ; therefore

LnFh — Z tiFV,

and the supplements of these angles arc also equal, that is,

iLsFh = I sFh'.

But the angle sFh, when reduced to time, measures the

interval of tim(> taken by the star to get from h to the meri-

dian, and sFh' measures the time taken from the meridian to

I'. Hence,

The interval of time between rising and southing
i3 equal to the interval between southing and setting.
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Thus, if t, t' are the times of rising and setting, and T the

time of transit, we have T—t ~ t'—T.

,'. T=i{(+ t'),or

The time of transit is the arithmetic mean between
the times of rising and setting.

In order to facilitate the calculations, tables have been constructed

giving the values of T—t for different latitudes and declinations.

If the observer's latitude Pn and the star's polar distance Ph are

known, it is possible (by Spherical Trigonometry) to solve the right-

angled triangle Pbn, and to calculate the angle nPh, and therefore

also the angle hPs. This angle, when divided by 15, gives the time

T— t. Moreover, the sidereal time of transit T is known, being equal

to the star's R.A. Hence the sidereal times of rising and setting can

be found.

If the star is on the equator, it will rise at E and set at Tf.

Since UQJF is a semicircle, exactly half the diurnal path will

be ahove the horizon, and the interval between rising and

setting will he 12 sidereal hours. If the star is to the north

of the equator, it will rise at some point b between U and n,

60 that

LlP8 > L EPs,

«.«., Z hPs > 90\

and the star will he above the horizon for more than 12 hours.

Similarly, if the star is south of the equator, it will rise at a

point c between E and 5, and will be above the horizon for

less than 12 hours.

From the equality of the triangles IPn, h'Pn (Eig. 15), we
also see that

nh = nl\ and sh = sh'.

Hence the diameter {m) of the celestial sphere, joining the

north and south points, bisects the arc {hh') between the

directions of a star at rising and setting.

This gives us an easy method of roughly determining, by
observation, the directions of the cardinal points ; but, owing
to the usual irregularities in the visible horizon, the method
is not very exact.
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Skction III.

—

The Sun^s Annual Jlofion in the Ecliptic—

•

The noon's Ifotion—Practical Applicatiom.

30. The Sun's Motion in Longitude, Right Ascen-
sion and Declination.—In § 11, wc briefly described

the Sun's apparent motion in the heavens relative to the

fixed stars. We defined a Year as the period of a complete

revolution, starting from and returning to any fixed point

on the celestial sphere. Tlic Ecliptic was defined as the

great circle traced out by the Sun's path, and its points of

intersection with the Equator were termed the First Point-

of Aries and First Point of Libra, or together, the

Equinoctial Points.
We shall now trace, by the aid of Pig. 16, the variations

in the Sun's coordinates during the course of a year, starting

with March 21st, when the Sun is in the first point of Aries.

We shall, as usual, denote the obliquity by *, so that.

i =. 23" 21^' nearly.

'Jiuic2l

On March 21st the Sun crosses the equator, passing-

through the first point of Aries (t). This is the VernaL
Equinox, and it is evident from the figure that

Sun's longitude = O, R.A. = 0, Decl. = 0,

From March 21st to June 2 1st the Sun's decliimtion is-

north, and is increasing.
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On June 21st the Sun has described an arc of 90° from T
on the ecliptic, and is at C (Fig. 16). This is called the

Summer Solstice. If we draw the declination circle

PCQ^ the spherical triangle T GQ is of the kind described in

Sph. Geom. (21), and CP is a secondary to the ecliptic.

Hence (Sph. Geom. 26) the Sun's polar distance CP is a

minimum and therefore its decl. a maximum.

Also T Q = 90° and (7Q = ACrQ = i. Hence

Sun's longitude = 90°, R.A. = 90^ = 6h.,

If. Decl. = /, (a maximum).

From June 21 to September 23 the Sun's declination is

still north, but is decreasing.

On September 23rd the Sun has described 180°, and is

at the first point of Libra (£1), the other extremity of the

common diameter of the ecliptic and ec[uator. This is the

Autumnal Equinox, and we have

Sun's long. = 180°, R.A. = 180° = 12h., Decl. = 0.

From Sept. 23 to Dec. 22 the Sun is south of the ecjiiator,

and its south declination is increasing.

On December 22nd the Sun has described 270° from T,
and is at L (Fig. 16). This is called the Winter Solstice.

"We have :£h L = 90°, and the triangle £b RL has two right

angles at R^ L (Sph. Geom. 21). The Sun's polar dis-

tance LP is a maximum (Sph. Geom. 26), and

^R= :£^Zz= 90°, ZR= Z ZzOzR = i. Hence

Sun's longitude = 270°, R.A. = 270° = 18h.,

S. Decl. = i, (a maxihium).

From December 22 to March 21 the Sun's declination is

still south, but is decreasing.

Finally, on March 21, when the Sun has performed a com-
plete circuit of the ecliptic, we have

Sun's long. = 360°, R.A. = 360° = 24h., Decl. = O.

The longitude and E.A. are again reckoned as zero, and
they, together with the declination, undergo the same cycle

of changes in the following year.
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31. Sun's Variable Motion in R.A.—We observe that

the Sun's right ascension is equal to its longitude four times

in the year, viz., at the two equinoxes and the two solstices.

At other times this is not the case.

For example, between the vernal equinox and summer
solstice we have tM< tS, .'. Sun's E.A. < longitude.

Hence, even if the Sun's motion in longitude be supposed

uniform, its R.A, will not increase quite uniformly. There

is a further cause of the want of uniformity, namely, that

the Sun's motion in longitude is not quite uniform ; but this

need not be considered in the present chapter.

32. Direct and Retrograde Motions.—The direction

of the Sun's annual revolution relative to the stars, i.e., motion
from west through south to east, is called direct. The
opposite direction, that of the diurnal apparent motions of the

stars or revolution from east to west, is called retrograde.
The revolutions of all bodies forming the solar system,

with the exception of some comets and one or two small

satellites, are direct.

"We shall see in Chapter III. that the apparent retrograde

diurnal motion may be accounted for by the direct rotation

of the Earth about its polar axis.
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33. Equinoctial and Solstitial Points—Colures.—
From § 30 it appears that the Summer andWinter Solstices
may be defined as the times of the year when the Sun attains

its greate.^t north and south declinations respectively. The
corresponding positions of the Sun in the ecliptic (C, Ly
Fig. 17) are called the Solstitial Points. In the same way
the Equinoctial Points {t ^ ^) are the positions of the

Sun at the Vernal and Autumnal Equinoxes when its

declination is zero.

The declination circle PyP'ih^ passing through the equi-

noctial points, is called the Equinoctial Colure. The
declination circle PCP'L^ passing through the solstitial points,

is called the Solstitial Colure. The latter passes through
the poles of the ecliptic (A", K').

34. To find the Sun's Bight Ascension and Decli-
nation.—In the " Xautical Almanack,"* the Sun's E.A.
and declination at noon are tabulated for every day of the
year. Their hourly variations are also given in an adjoining

column. To find their values at any time of the day,

we only have to multiply the hourly variation by the

number of hours that have elapsed since the preceding noon,

and add to the value at that noon.

Example.—To find the Sim's R.A. and decl. on September 4, 1891

t .51i. 18m. in the afternoon. We find fi'om the Ahnanack for 1891
under September 4 :

—

Srui's R.A. at noon = lOh. 52m. lus., hourly variation 904s.
N. Decl. at noon = 7° 12' 12" „ „ 55-4"

(1) R.A. at noon = lOh. 52m. 15s.

Increase in 5h. = 9'04s. x 5 = 45'2

18m, = 2-7

.-. R.A. at 5h. 18m. = lOh. 53in. 3s.

(2) From the Almanack, decl. is less on September 5, and
tLerefero decreasing.

N. Decl. at noon = 7° 12' 12"

Decrease in 5h. = 55-4" x 5 = 4' 37" ) To be

,, 18m. = 17"
j subtracted.

N. Decl. at 5h. 18m. = T T 18

'

* Also in " Whitaker's Almanack," which may be consulted with.

advantage.
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35. Rough Determination of the Sun's Ifc.A.—We
can, without tlie ''Xautical Almanack," find to within a
degree or two, the Sun's K.A. on any given date, as follows :

—

A year contains oGo^ days. In this period the Sun's R.A.
increases by SeO"". Hence its average rate of increase is very
nearly 30' per month, or 1° per day.

Knowing the Sun's R.A. at the nearest equinox or solstice,

we add T for every day later, or subtract 1° for every day
before that epoch. If the li.A. is required in time, we allow

for the increase at the rate of 2h. per month, or 4m. per day.

Examples.—1. To find the Sun's R.A. on January 1st. On
December 22nd the 11A. = 18h. Hence on January 1st, which is

ten days later, the Sun's R.A. = 18h. 40in.

2. To find on what date the Sun's R.A. is lOh. 36m. 0^ Sep-
tember 23rd the R.A. is 12h. Also 12h.-10h. 36m. = 84m., and
the R.A. increases Sim. in 21 days. Hence the required date is 21

days before September 23, i.e., September 2nd.

36. Solar Time.—Apparent Noon is the time of the

Sun's upper transit across the meridian, that is, in north

latitudes, the time when the Sun souths. Apparent Mid-
night is the time of the Sun's transit across the meridian

below the pole (and usually below the horizon).

An Apparent Solar Day is the interval between two
consecutive apparent noons, or two consecutive midnights.

Like the sidereal day, the solar day is divided into 24 hours,

which are again divided into 60 minutes of 60 seconds each.

!For ordinary purposes the day is divided into two portions

:

the morning, lasting from midnight to noon ; the evening,

from noon till midnight ; and in each portion times art:

reckoned from Oh. (usually called 12h.) up to 12h. For

astrojwmical purposes we shall find it more convenient to

measure the solar time by the number of solar hours that

have elapsed since the preceding noon. Thus, 6.30 a.m. on

January 2nd will be reckoned, astronomically, as 18h. 30m.

on January 1st. On the other hand, 12.53 p.m. will be

reckoned as Oh. 53m., being 53 minutes jjast noon.

Luring a solar day the Sun's hour angle increases from 0'

to 360°. It therefore increases at the rate of 15° per hour.

Hence
The apparent solar time = the Sun's hour angle

expressed in time.
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At noon the Sun is on the meridian. The sidereal time,

being the hour angle of T, is the same as the Sun's E..A., i.e.^

Sidereal time of apparent noon = Snn's R.A. at noon.

At any other time, the difference between the sidereal and

solar times, being the difference bet^yeen the hour angles of

T and the Sun, is equal to the Sun's 11. A. Hence, as in

§ 25, we have

(Sidereal time)— (apparent solar time) = Sun's R.A.

If a and a-\-x are the right ascensions of the Sun at two
consecutive noons, then, since a whole day has elapsed between

the transits, the total sidereal interval is 24h. +:r, and exceeds a

sidereal day by the amount x. But the interval is a solar day.

Hence, the solar day is longer than the sidereal

day, and the difference is equal to the sun's daily
motion in R.A.^^

37. Morning and Evening Stars.—Sunrise and
Sunset.—When a star rises shortly before the Sun, and in

the same part of the horizon, it is called a Morning Star.
Such a star is then only visible for a short time before sunrise.

When a star sets shortly after the Sun, and in the same part

of the horizon, it is called an Evening Star. It is then

only visible just after sunset.

It will be readily seen from a figure, that a star will be a

morning star if its decl. is nearly the same as the Sun's, while

its ll.A. is rather less.. Similarly, a star will be an evening
star if its decl. is nearly the same as the Sun's, but its R.A.
somewhat greater. Thus, as the Sun's E.A. increases, the

stars which are evening stars will become too near the Sun to

to be visible, and will subsequently reappear as' morning stars.

The times of sunrise and sunset are calculated in the

manner described in § 29. The hour angles of the Sun, when
crossing the eastern and western horizons, determine the

intervals of solar time between sunrise, apparent noon, and
sunset. The two intervals are equal, if the Sun's decl. be
supposed constant from sunrise to sunset—a result very
approximately true, since the change of decl. is always very
small.

* Owing to the sun's variable motion in R.A., the apparent solar day is not quite
of constant length. In tlie present chapter, however, it may be regarded as
approximately constant.
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38. The Gnomon.—Determination of Obliquity of
Ecliptic.— The Greek astronomers observed ' the Sim's
mutioii by means of the Gnomon, an instrument consistiui:'

es.-entially of a vertical roci standing in the centre of a hori-

zontal floor. Tlic direction of the shadow cast by the Sun
determined the Sun's azimuth, while the length of the shadow,
divided by the height of the rod, gave the tangent of th^^

Sun's zenith distance. To find the meridian line, a circle wa-
described about the rod as centre, and the directions of the
shadoAV were noted when its extremity just touched the circle

before and after noon. The sun's Z.D.'s at these two
instants being equal, their azimuths were evidently (Sph.

Geom. 27) equal and opposite, and the bisector of the angle
between the two directions was therefore the meridian line.

The Sun's meridian zenitli distances were then observed

both at the summer solstice, Avhen the Sun's ^N". decl. is / and
meridian Z.D. least, and at the winter solstice, when the Sun's

S. decl. is / and meridian Z.D. greatest. Let these Z.D.'s be 2,

and Z.2 respectively, and let I be the latitude of the place of

observation. From § 24, we readily see that

~i = l-i, z^ = /+ /,

thus determining both the latitude and the obliquity.

39. The Zodiac.—The position of the ecliptic was defined

by the ancients by means of the constellations of the Zodiac,

which are twelve groups of stars, distributed at about equal

distances round a belt or zone, and extending about 8° on
each side of the ecliptic. The Sun and planets were observed

to remain always within this belt. The vernal and autumnal
equinoctial points were formerly situated in the constellations

of Aries ancl Libra, whence they were called the First Point

of Aries and the First Point of Libra. Their positions are very

sloicli/ varying, but the old names are still retained. Thus,

the •' First Point of Aries" is now situated in the constel-

lation Pisces.

The early astronomers probably determined the Sun's

annual path by observing the morning and evening stars.

After a year the same morning and evening stars would be

observed, and it would be concluded that the Sun performed,

a complete revolution in the year.
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40. Motion of the Moon.—The Moon describes among
tlie stars a great circle of the celestial sphere, inclined to

the ecliptic at an angle of about 5°. The motion is direct,

and the period of a complete " sidereal " revolution is about

27^ days.

In this time the Moon's celestial longitude increases by 360''»

Wlien the Moon has the same longitude as the Sun, it i»

said to be New Moon, and the period between consecutive

new Moons is called a Lunation. When the Moon hasr

described 360° from new Moon, it will again be at the same
point among the stars ; but the Sun will have moved forward,

so that the Moon will have a little further to go before it

f;atches up the Sun again. Hence the lunation will be rather

longer than the period of a sidereal revolution, being about

29| days.

The Age of the Moon is the number^ of days which have
elapsed since the preceding new Moon. Since the Moon
separates 360° from the Sun in 29| days, it will separate at

the rate of about 12°, or more accurately 12-^-°, per day,

or 30' per hour. This enables us to calculate roughly the

Moon's angular distance from the Sun, when the age of the

Moon is given, and conversely, to determine the Moon's age
when its angular distance is given.

Example.—On September 23, 1891, the Moon is 20 days old.

To find roughlj' its angular distance from the Sun and its longitude

on that day.

(1) In one day the Moon separates 124° from the Sun; therefore,

in 20 days it will have separated 20 x 121, or 244°, and this is the
required angular distance from the Sun.

(2) On September 23 the Sun's longitude is 180° ; therefore the
]\Ioon's longitude is 180° + 244° = 424° = 360° + 64°, or 64°.

This method only gives very rough results; for the Moon's
motion is far from uniform, and the variations seem very
irregular.

Moreover, the plane of the Moon's orbit is not fixed, but
its intersections with the ecliptic (called the Nodes) have a

retrograde motion of 19° per year. Hence, for rough pur-
poses, it is better to neglect the small inclination of the Moon's
orbit, and to consider the Moon in the ecliptic. If greater

accuracy be required, the Moon's decl. and R.A. may be
found from the Nautical Almanack.

ASTKON. D
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41. Astronomical Diagrams and Practical Applica-
tions.—Wc can now solve many problems connected with
the motion of the celestial bodies, such as determining the direc-

tion in which a given star will be seen from a given place, at

a given time, on a given date, or finding the time of day at

which a given star souths at a given time of year.

We have, on the celestial sphere, certain circles, such as

the meridian, horizon, and prime vertical, also certain points,

such as the zenith and cardinal points, whose positions relative

to terrestrial objects always remain the same. Besides these,

we have the poles and equator, which remain fixed, with
Tefcrence both to terrestrial objects and to the fixed stars.

We have also certain points, such as the equinoctial points,

.and certain circles, such as the ecliptic, which partake of

the diurnal motion of the stars, performing a retrograde

revolution ab.)ut the pole once in a sidereal day. Lastly,

we have the Sun, which moves in the ecliptic, performing

•one retrograde revolution relative to the meridian in a solar

aay, or one direct revolution relative to the stars in a year,

^nd whose hour angle measures solar time.

In drawing a diagram of the celestial sphere, the positions

•of the meridian, horizon, zenith, and cardinal points should

fir.-t be represented, usually in the positions shown in Fig.

18. Knowing the latitude nF of the place, we find the

pole P. The points Q, R, where the equator cuts the meri-

dian, are found by making PQ = PR = 90° ; and the points

Q, R, with U, IV, enable us to draw the equator.

We now have to find the equinoctial points. How to do
this depends on the data of the problem. Thus we may
have given

—

(i.) The sidereal time
;

(ii.) The hour angle of a star of known E,.A. and decl

;

(iii.) The time of (solai') day and time of year.

In ease (i.), the sidereal time multiplied by 15 gives, in

<legrees, the hour angle (Qt) of the first point of Aries.

Measuring this angle from the meridian westwards, we find

Aries, and take Libra opposite to it. Any star of known
decl. and E.A. can be now found by taking on the equator

tM— star's R.A., and taking on MP, Mx = star's decl.
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The ecliptic may be drawn passing through Aries and

Libra, and inclined to the equator at an angle of about 23^"

(just over J right angle). As we go round from west to east, or

in the direct sense, the ecliptic passes from south to north of

the equator at Aries ; this shows on which side to represent

the ecliptic. Knowing the time of year, we now find the

Sun (roughly) by supposing it to travel to or from the

nearest equinox or solstice about 1° per day from west to east.

Finally, if the Moon's age be given, we find the Moon by
measuring 12-^-° per day, or 30' per hour eastwards from the

Sun.

In case (ii.), we either know the hour angle, QM ov QPMoi
a known star (:r), or, what is the same thii;g, the sidereal

interval since its transit ; or, in particular, it is given that the

star is on the meridian. Each of these data determines J/,

the foot of the star's declination circle. From J/"we measure

Mt westwards equal to the star's R.A. This finds Aries.
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[n case (iii.)? the solar time multiplied by 15 gives the

ttan's hour angle QPS in degrees. From the time of year

we can find the Sun's E.A., tI^S. Prom these we find

QFT and obtain the position of Aries just as in case (ii.)

It will be convenient to remember that azimuth and hour
angle are measured from the meridian westwards, while

right ascension and celestial longitude are measured from the

first point of Aries eastwards. Thus, since the Sun's diurnal

motion is retrograde, and its annual motion direct, the Sun's

azimuth, hour angle, E.A., and longitude are all increasing.

Most problems of this class depend for their solution chiefly

on the consideration of arcs measured along the equator, or

(what amounts to the same) angles measured at the pole.

In another class of problems depending on the relation be-

tween the latitude, a star's decl. and meridian altitude (§24),
we jaave to deal with arcs measured along the meridian.

These two classes include nearly all problems on the celestial

sphere which do not require spherical trigonometry.

Examples.

1. To represent, in a diagram, the positions of the Sun and Mooa,
and the star ( HercuUs as seen by an observer in London on Aug. 19,

1891, at 8 p.m., the following data being given :—Latitude of London
= 51°, Moon's age at noon on Aug. 19 = 14 days 19 hours, Moon's
latitude = 2° S., E.A. of (HercuUs = 16h. 37m., decl. = 31° 48' N.

The construction must be performed in the following order :

—

(i.) Draw the observer's celestial sphere, putting in the meridian,

horizon, zenith Z, and four cardinal points n, E, s, W.

(ii.) Indicate the position of the pole and equator. The observer's

latitude is 51°. Make, therefore, nP = 51°. P will be the pole. Take
PQ = PB = 90°, and thus draw the equator, QEBW.

(iii.) Find the declination circle passing through the Sun. The
time of day is 8 p.m. Therefore the Sun's hour angle is 8 x 15°, or

120°. On the equator measure QK = 120° westwards from the

meridian. Then the Sun © will lie on the declination circle PK.
Since QW = 90°, we may find JT by taking WK = 30° = ^ WR.

(iv.) Find the first points of Aries and Libra. The date of obser-

vation is August 19. Now, on September 23 the Sun is at :^. Also

from August 19 to September 23 is 1 month 4 days. In this

interval the Sun travels about 34° from west to east. Hence the

Sun is 34° west of ii. And we must measure E:£i: = 34° eastwards

from 8, and thus find zHh.

The first point of Aries ( T ) is the opposite point on the equator;.
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(v.) We may now draw the ecliptic CrL:^ passteg through the

first points of Aries and Libra, and inclined to the equator at an
angle of abont 23^° (i.e., slightly over i of a right angle). The Sun
is above the equator on August 19; hence the ecliptic cuts P£' above

K. This shows on which side of the equator the ecliptic is to be

drawn ; we might otherwise settle this point by remembering that

the ecliptic rises above the equator to the east of T

.

The intersection of the ecliptic with PF determines 0, the position

of the Sun.

(vi.) Having found t, we can now find C -H^''C"'Zis. Its right

ascenfion is 16h. 37m., in time, = 249° 15' in angular measure. On
the equator measure off tM = 249° 15' in the direction -west to east

(i.e., the direction of direct motion) from T ; we must, therefore,

take ^M = 69° 15'. On the declination circle MP, measure off

Mx = 31° 48' towards P. Then x is the required position of

? Herculis.

(vii.) Find the Moon. At 8 p.m. the Moon's age is 14d. 19h + 8h.

= 15d. 3h. Hence, the Moon has separated from the Sun by
about 185° in the direction west to east. Measure off © D = ISo"

from west to east, and put in ]) about 2" below the ecliptic. The
Moon's position is thus found.
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2. To find (roughly) at what time of vear the Star
(R.A. = 20h. 38m., decl. = 44° 53' N.) souths at 7 p.m.
Let a be the position of the star on the meridian (Fig 20).

7 p.m. the Sun's western hour angle {QS or QPS) = 7h. = 105°.

Also Ti?Q, the Star's R.A. = 20h.
38m. Hence tRS, the Sun's R.A.
= 20h. 38m. - 7h. = 13h. 38m. ; or,

in ano-ular measure, Sun's R.A.
= 204° 30'. Now, on September 23,

Sun's R.A. = 180°, and it increases at

about 1° per day. Hence the Sun's
R.A. will be 204° about 24 days later,

i.e., about October 17th.
3. At noon on the longest day (June

21) a vertical rod casts on a horizontal
plane a shadow whose length, is equal
to the height of the rod. To find

the latitude of the place and the Sun's altitude at midnight.

Cygni

At

Fig. 21.

From the data, the Sun's Z.D. at noon, ZQ), evidently = 45'',

Also, if QR be the equator, ©Q = Sun's decl. = i =- 2.3^ 27' (approx.)

;

.-. latitude of place = ZQ = 45° + 23° 27' = 68° 27'.

If 0' be the Sun's position at midnight,

PO' = P© - 90°-2.3°27' = G6° 33'.

But Pn = lat. = 68° 27'.

.-. Q'n = 68° 27'-66° 33' = 1° 54'

;

and the Sun will be above the horizon at an alt. of 1° 54' at

midnight.
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EXAMPLES.—I.

1. Why are tlie following definitions alone insufficient?—The zenith

and nadir are the poles of the horizon. The horizon is the great

circle of the celestial sphere whose plane is perpendicular to the

line joining the zenith and nadir.

2. The R. A. of an equatorial star is 270''
; determine approximately

the times at which this Star rises and sets on the 21st June. In

what quarter of the heavens should we look for the star at mid-

night ?

3. Explain how to determine the position of the ecliptic relatively

to an observer at a given hour on a given day. Indicate the position.

of the ecliptic relatively to an observer at Cambridge at 10 p.m. at

the autumnal equinox. (Lat. of Cambridge = 52" 12' 51"6 ".)

4. Prove geometrically that the least of the angles subtended at
an observer by a given star and different points of the horizon is-

that which measures the star's altitude.

5. Show that in latitude 52' 13' N. no circumpolar star when
southing can be within 75' 34' of the horizon.

6. Represent in a figure the position of the ecliptic at sunrise on
March 21st as seen by an observer in latitude 45'. Also in lati-

tude 67^°.

7. If the ecliptic were visible in the first part of the preceding^-

question, describe the variations which would take place duxnng the-

day in the positions of its points of intersection with the horizon.

8. Determine when the star whose declination is 30' N. and whose
R.A. is Sof will cross the meridian at midnight.

9. The declination and R.A. of a given star are 22' X. and
6h. 20m. respectively. At what period of the year will it be (i.) a
morning, (ii.) an evening star ? In what part of the sky woull yots

then look for it ?

10. Find the Sun's R.A. (roughly) on January 25th, and thus de-

termine about what time Aldeharan (R.A. 4h, 29m.) vriW cross the-

meridian that night.

11. Where and at what time of the year would you look for

Fomalhaut ? (R.A. 22h. 51m., dccl. 30'. 16' S.)

12. At the summer solstice the meridian altitude of the Sun is

75°. What is the latitude of the place ? What will be the meridian,

altitude of the Sun at the equinoxes and at the winter solstice ?
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EXAMINATIOi!^ PAPEK.—I.

1. Explain how the directions of stars can be represented by
tneans of points on a sphere. Explain why the configurations of

the constellations do not depend on the position of the observer,

and why the angular distance of two different bodies on the celestial

•sphere gives no idea of the actual distance between them.

2. Define the terms

—

horizon, meridian, zenith, nadir, equator^

ecliptic, vertical, prime vertical, and represent their positions in a
figure.

3. Explain the use of coordinates in fixing the position of a body-

on the celestial sphere, and define the terms

—

altitude, azimuth,
polar distance, hour angle, right ascension, declination, longitude,

latitude. Which of these coordinates always remain constant for

the same star ?

4. Dofine the obliquity of the ecliptic and the latitude of the

ohsei-ver. Give (roughly) the value of the obliquity, and of the latitude

of London. Indicate in a diagram of the celestial sphere twelve
different arcs and angles which are equal to the latitude of the
observer.

5. What is meant by a sidereal day and a sidereal hour ? How
could you find the length of a sidereal day without using a tele-

scope ? Why is sidereal time of such great use in connection with
astronomical observations ?

6. Show that the declination and right ascension of a celestial

body can be determined by meridian observations alone.

7. What is meant by a circumpolar star ? What is the limit of

declination for stars which are circumpolar in latitude 60° N, ?

Indicate in a diagram the belt of the celestial sphere containing all

the stars which rise and set.

8. Define the terms

—

year, equinoxes, solstices, equinoctial and
solstitial points, equinoctial and solstitial colures. What are the
dates of the equinoxes and solstices, and what are the corresponding
values of the Sun's declination, longitude, and right ascension ?

Find the Sun's greatest and least meridian altitudes at London.

9. Why is it that the interval between two transits of the Sun or

Moon is rather greater than a sidereal day ? Show how the Sun's

R.A. may be found (roughly) on any given date, and find it on
July 2nd, expressed in hours, minutes, and seconds.

10. Indicate (roughly) in a diagram the positions of the following

stars as seen in latitude 51° on July 2nd at 10 p.m :

—

Capella (R.A.

5h. 8m. 38s., decl. 45° 53' 10" N.), a Lyrae (R.A. 18h. 33m. 14g.,

decl. 38°40'57"N.), o Scorpii (R.A. 16h. 22m. 43s., decL 26° 11'

22" S.), o Ursas Majoris (R.A. lOh. 57m. Os., decl. 62° 20' 22" N.)



CHAPTER II

THE OBSEEVATOllY.

Section I.

—

Instniments adaptedfor Meridian Ohservations.

42. One of tlie most important problems of practical astro-

momy is to determine, by observation, the right ascension and
declination of a celestial body. We have seen in Chapter I.

that these coordinates not only suffice to fix the position of a
star relative to neighbouring stars, but they also enable us to

find the direction in which the star may be seen from a given

place at a given time of day on a given date (§41). More-
over, it is evident that by determining every day the decli-

nation and right ascension of the Sun, the Moon, or a planet,

the paths of these bodies relative to the stars can be mapped
out on the celestial sphere and their motions investigated.

In Section II. of tlie preceding chapter we showed that

the right ascension and declination of a star can be deter-

mined by observations made when the star is on the meridian.

"We proved the following results :

—

The star's E.A. measured in time is equal to the time of

transit indicated by a sidereal clock (§ 24).

The star's north dccl, d can be found from % its meridian
zenith distance, and I the latitude of the observatory by the

formula «? = ^-|-z,

where if the decl. is south d is negative, and if the star tran-

sits south of the zenith z is negative (§24).
Lastly, I can be found by observing the altitudes of a

circnmpolar star at its two culminations, and is therefore
known (§28).
Hence the most essential requisites of an observatory must

include (i.) a clock to measure sidereal time, (ii.) a telescope

so fitted as to be always pointed in the meridian, provided
with graduated circles to measure its inclination to the ver-
tical, and with certain marks to fix the position of a star in
-its field of view.
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43. The Astronomical Clock is a clock regulated to

indicate sidereal time. It should be set to mark Oli. Om. Os.

at the time when the first point of Aries crosses the meridian.

It will therefore gain about 4 minutes per day
^

on an ordinary clock, or a whole day in the

course of a year (§§ 22, 36).

The clock is provided with a seconds hand, and

the pendulum beats once every second, produc-

ing audible "ticks"; hence an observer can

estimate times by counting the ticks, whilst he

is watching a star through a telescope.

The pendulum is a compensating pendu-
lum, or one whose period of oscillation is un-

affected by changes of temporature. The form

most commonly used is Graliam's Mercurial
Pendulum, in which the bob carries two glass

cvlindors containing mercury (Fig. 22). If the f^

temperature be raised, the effect of the increase

in length of the pendulum rod is compensated

for by the mercury expanding and rising in the

cylinders. The same result is also effected in

Hu-rison's Gridiron Pendulum, described in

Wallace Stewart's Text-Book of Heat, page 37.

The clock is sometimes regulated by placing

small shot in a cup attached to the pendulum.
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44, The Astronomical Telescope (Fig. 23) consists

essentially of two convex lenses, or systems of lenses, and
0', fixed at opposite ends of a metal tube, and called the

object-glass and eye-piece respectively. The former lens

receives the rays of light from the stars or other distant objects,

and forms an mverted " image " (ah) of the objects. The
centre of the round object-glass is called its "optical

centre," and the image is produced as follows :—Let AAA
be a pencil of rays from a distant star. By traversing the

object-glass these rays are refracted or bent towards the

middle ray A 0, which alone is unchanged in direction. The
rays all converge to a common point or " focus " at a point a

in AO i^roduced, and, if received by the eye after passing a,

they would appear to emanate from a luminous point or

"image " of the star at a.

Similarly, the rays BBB, coming from another distant star,

will converge to a focus at a point h in BO produced, and
will give the effect of an "image" of the star at h. All

these images (<?, h) lie in a certain plane FN^ called the focal

plane of the object-glass, and they form a kind of picture or

image of such stars as are in the field of view.

The eye-piece 0' acts as a kind of magnifying glass, and
enlarges the image al just as if it were a small object placed

in the focal plane FN. The figure shows how a second image
A'B' is formed by the direction of the pencils of light after

refraction through 0'. This is the final image seen on looking

through the telescope. The eye must be placed in the plane

FE, so as to receive the pencils from A\ B

.

If, now, a framcAvork of fine wires or spider's threads

(Fig. 25) be stretched across the tube in the focal plane

FN., these wires, together with the image (aJ), will be
equally magnified by the eye-piece. They will thus be

seen in focus simultaneously with the stars, and the field

of view will appear crossed by a series of perfectly distinct

lines, which will enable us to fix any star's position, and
thus determine its exact direction in space. Suppose, for

example, that we have two wires crossing one another at the

point F\ and the telescope is so adjusted that the image of a

star coincides with jP, then we know that the star lies in the

line joining F' to the optical centre of the object-glass.
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45. The Transit Circle (Figs. 24, 26) is the instrument
iised for determining both right ascension and declination. It

consists of a telescope, ST, attached perpendicularly to a
light, rigid axis, WFPE, hollow in the interior. The ex-
tremities of this axis are made in the form of cylindrical pivots,

E, W, which are capable of revolving freely in two fixed forks,

called Y's, from their shape. These Y's rest on piers of solid

stone, built on the firmest possible foundations, and they are

carefully fixed, so as always to keep the axis exactly hori-

zontal and pointing due east and west.

Fig. 24.

In order to diminish the effect of friction in wearing away
the pivots, the axis is also partially supported at F, F upon
friction rollers (not represented in the figure) attached to a
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system of levers
( Q, Q) and counterpoises {H, H) placed within

tlie piers. These support about four-fifths of the weight of

the telescope, leaving sufficient pressure on the Y's to ensure
their keeping the axis fixed.

Within the telescope tube, in the focal .plane of the object-

glass (§ 44), is fixed a framework of cross wires, presenting

the appearance shown in Fig. 25. Five, or sometimes seven,

wires appear vertical, and two appear horizontal. Of the
latter, one bisects the field of view ; the other is movable up
and down by means of a screw, whose head is divided by
graduation marks which indicate the position of the wire.

The line joining the optical centre of the object-glass to

the point of intersection of the middle vertical wire with the
fixed horizontal wire is called the Line of
Collimation. The wires should be so

adjusted that the line of collimation is per-

pendicular to the axis about which the

telescope turns. Tor this purpose the

framework carrying the wires can be moved
horizontally, by means of a screw, into the

right position. If the Y's have been accu-

rately fixed, then, as the telescope turns,

the line of collimation will always v lie in the plane of the

meridian. Hence, when a star transits we shall, on looking

through the telescope, see it pass across the middle vertical

wire.

Attached to the axis of the telescope, and turning with it,

are two wheels, or graduated circles, GM, having their

circumferences divided into degrees, and further subdivided

by fine lines at (usually) intervals of 5'. By means of these

gi-aduations the inclination of the line of collimation to the

vertical is read off by aid of scvi ra' fixed compound micro-

scopes, A, ly JB, pointed towards the circle. One of these

microscopes (/), called the Pointer or Index, is of

low magnifying power, and shows by inspection the number
of degrees and subdivisions in the mark of the circle, which
is opposite a wire bisecting its field of view. The pointer

should read zero when the line of collimation points to the

zenith, and the graduations increase as the telescope is-

turned northwards.
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46. Reading Microscopes.—In addition to tlie pointer

there are four (sometimes six) other microscopes, called

Reading Microscopes, arranged symmetrically round each

circle, as at AJJCD (Fig. 26). These serve to determine the

number of minutes and seconds in the inclination of the tele-

scope, by means of the following arrangement. Inside the

tube of each microscope in the focal plane of its object-

glass*' is fixed a graduated scale iVZ (Eig. 27) in the form of

a strip of metal with fine teeth or notches. This scale, and
the image of the telescope circle, formed by the object-glass of

the microscope, are simultaneously viewed by the eye-glass,

and present the appearance shown in Fig. 27.

A small hole O marks the middle notch, and 5 notches

correspond to a division of the telescope circle, hence the

pumber of notches from the hole to the next division of the

circle gives the number of minutes to be added to the pointer

reading.

* A compound microscope, like a telescope, consists of an object-

glass, which forms an image of an object, and an eye-piece which
enlarges this image. A scale or wires fixed in the plane of the
the image will, therefore, be seen in distinct focus, like the wires
;in tlie tcjcscope.
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To read off the numLer of seconds, a pair of parallel

wires, SE, are attached to a framework, and can be moved
across the field of view by means of a screw. One whole

turn takes the wires from one notch of the metal scale to

the next, i.e., over a space representing 1' on the telescope

circle ; and the head of the screw is divided into 60 parts,

each, therefore, representing 1". The wires are adjusted

so that the graduation on the telescope circle appears midway
between them, and the reading of the screw-head then gives

the number of seconds. With practice, tenths of a second

can be estimated.

The four microscopes of one of the circles are all read, and
the best result is obtained by taking the mean of the readings.

47. Clamp and Tangent Screw.—When it is required

to rotate the telescope of the transit circle very slowly, this

is done by means of the bar represented at ZJT in Fig. 24.

The telescope axis may be firmly clamped to this bar by
means of a clamp (not represented in the figure), which
grips the rim of one of the circles as in a vice. When this

has been done, the bar KZ, and with it the telescope, may be

slowly turned by means of a horizontal screw at L, called

the Tangent Screw, and provided with a long handle

attached to it by a " universal joint." This handle is held

by the observer, and he can thus turn the tangent screw

without ceasing to watch the stars.

48. Arrangements for Illumination.—As most obser-

vations are conducted at night, the wires in the telescope and

the graduations of the circles must be illuminated. This is

done by a lamp placed exactly in front of one of the pivots,

the light from which is concentrated by means of a bull's-eye

lens in front and a mirror behind. Part of the rays are

reflected, by a complicated arrangement of mirrors and

prisms, so as to illuminate the parts of the graduated circle

viewed by the microscopes. The rest of the light passes

through a plate of red glass down the hollow axis to a ring-

shaped mirror, whence it is reflected up to the wires ; thus

the wires appear as dark lines on a dull red ground. There

is also another arrangement for illuminating the wires from in

front, if desired, so that they appear bright on a dark .ground.
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49. Taking a Transit.—Eye and Ear Method.—If
a star is to be observed, with the transit circle, its E.A.
and dccl. must have been rougldij estimated beforeband

;

hence, its meridian Z.D. [= (star's decl.) — (observer's lat.)]

is known roughly. Before the star is expected to
cross the meridian, the telescope is turned by hand
until the pointer indicates this roughly determined Z.D.

;

this adjustment is sufficiently accurate to ensure the
star traversing the field of view. The telescope is then,

clamped (§ 47). The observer now ''takes a second" from
the astronomical clock, i.e.^ he observes and writes down the
hour and minute, observes the second, and begins counting
seconds by the clock's ticks. Thus, if he sees the time to be
lib. 23m. 29s., he writes down " llh. 23m.," and at the
subsequent ticks he counts " 30—31—32—33— " and so on

;

in this way he knows, during the rest of the observation, the
exact time at every clock-beat without looking at the clock.

The star soon approaches the first vertical wire, and passes

it, usually between two successive ticks. "With practice, the
observer is able to estimate fractions of a second as follows :

—

Suppose the star crosses the wire between the 34th and 3oth
tick. The positions of the star are noticed at tick 34 and at

tick 35, and by judging the ratio of their distances from the

wire on the two sides, the observer estimates the time of

crossing the wire by a simple proportion, and writes down
this time, say 34-6. The estimate is difficult to make,
because the two positions of the star are not visible simulta-

neously, and the star does not stop at them, but moves
continuously ; hence to estimate tenths of seconds (as is

usually done) requires much training and practice.

Moreover, the observer must not lose count of the ticks of

the clock, for when he has written down the instant of transit

over the first wire the star will be nearing the second wire.*

The time of transit over the second vertical wire is now
estimated in the same way, and the process repeated at

each wire. The average of the times of crossing the five

or seven wires is taken as the time of transit ; in this way,

* In most instruments the wires are placed at such a distance

that a star in the equator takes about 13 seconds from one wire
to the next.
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the effect of small errors of observation will be much smaller

than if the transit over one wire only were observed.

This method of taking the time of transit is called the
" Eye and Ear Method."
While observing the transit, the observer turns the tele-

scope by means of the tangent screw, until the horizontal

wire bisects the image of the star ; during the rest of the

observation the star will appear to run along the horizontal

wire. After the observation, one of the circles is read by the

pointer and the four microscopes. If the circle reads 0" 0' 0",

when the line of collimation points to the zenith, the reading

for the star will determine its meridian Z.D., in other cases

we must subtract the zenith reading. From the meridian

Z.D. the declination can be found.

50. The Chronograph.—To obviate the difficulty of

observing transits by the eye and ear method, an instrument

called the Chronograph is now frequently used. A cylin-

drical barrel, covered with prepared paper, is made to turn

slowly and uniformly by clockwork about an axle, on which
a screw is cut. In this way the barrel is made to move
forward in the direction of its axis, about one-tenth of an

inch in every revolution. The observer is furnished with a

key or button, which is in electric communication with a pen
or marker. At the instant when the star crosses one of the

vertical wires, the observer depresses the key, and a mark is

made upon the paper of the barrel. The astronomical clock,

also, has electric communication with the marker, and marks
the paper once every second, the beginning of a new minute
being indicated, in some instruments, by the omission of the

mark, in others, by a double mark. In this way, a record is

made of the times of transit over the wires, the marks being
arranged in a spiral, owing to the forward motion of the

barrel. The distance of the leginning of any transit-mark

from the previous second-mark can be measured at leisure

with very great accuracy, and the time of transit may thus
be readily calculated. Indeed, there is no difficulty in

recording, by this method, the transits of two, or even more,
near stars which are simultaneously in the field of view of

the telescope, for the transit-marks of the different stars can
be readily distinguished from one another afterwards.

ASTBOir. E
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51. Corrections.—After tlie transit of a star has been
observed, certain corrections have to be allowed for in practice

before its true R. A. and decl. are obtained. These corrections,

which depend on errors of observation, may be conveniently

classified as follows :

—

{a) Corrections required for the Right Ascension

:

1

,

Error and rate of the astronomical clock.

2, Personal equation of the observer.

3, Errors of adjustment of the transit circle, including

{a) Collimation error.

ih) Level error.

{c) Deviation error.

{d) Irregularities in the form of the pivots.

{e) Corrections for the " verticality" and "wire
intervals."

(jb) Connections required in finding the Declination :

1. Reading for zenith point, or for the nadir, hori-

zontal or polar point.

2. Errors of imperfect centering of the circles.

3. Errors of graduation.

4. Errors of " runs " in the reading microscopes.

Besides these corrections, which we now proceed to de-

scribe, there are others of a physical nature, such as refraction,

parallax, aberration, the description of which will be given

later. A correction is always regarded as positive when it

must be added to the observed value of a quantity in order

to get the true value, negative if it has to be subtracted.

(a) CORRECTIONS REQUIRED FOR THE RIGHT ASCENSION.
52. Clock Error and Rate.—A good astronomical clock

can generally be regulated so as not to gain or lose more than
about 2s. in a sidereal day. But to estimate times with
greater accuracy, it is necessary to apply a correction to the

time indicated, owing to the clock being either fast or slow.

The Error of a clock is the amount by which the clock is

slow when it indicates Oh. Om. Os. Thus, the error must be

added to the indicated time in order to obtain the correct

time. If the clock is fast, its error is negative.

The Rate of the clock is the increase of error during 24
hours. It is, therefore, the amount which the clock loses in

the 24 hours. If the clock ffains, the rate is negative.



THE OBSERVATORY. 45

The rate of a clock is said to be nuiform or constant
wlieii the clock loses equal amounts in equal intervals of

time. In a good astronomical clock, the rate should remain
uniform for several weeks.

53. Correction for Error and Rate.—If the error of a

clock and its rate (supposed uniform) are known, the correct

time can be readily found from the time shown by the clock.

The method will be made clear by the following example :

—

Example.—If the error of an astronomical clock be 2'52s., and its

rate be 0-44s., to find to the nearest hnndreth of a second the correct

time of a transit, the observed time bythe clock being 19h.23m.25'44s.

Here in 24h. the clock loses 44s.

.-. in Ih. it loses -^ x 0-44s. = 0-0183s.

Hence, loss in 19h. - OOlsSs. x 19 = 0-348s.,

and loss in 23m. = 0"007s.

At Oh. Om. Os. the clock error is = 2-52s.

;

/. at 19h. 23m. 25-44s., clock is too slow by 2-52s. + 0-355s. = 2'8Ss.,

.-. the correct time = 19h. 23m. 25-44s. + 2-88s.

= 19h. 23m. 28-32S.

54. Determination of Error and Rate of Clock.—
Tlie clock error is found by observing the transit of a known
star, i.e., a star whose R.A. and decl. are known.

If the clock were correct, the time of transit (when cor-

rected for all other errors) would be equal to the star's E.A.
(see § 24). If this is not the case, we have evidently

(Clock error) = (Star's R.A.)
— (observed time of transit).

This determines the clock error at the time of transit.

To find the rate, the transits of the same star are observed
on two consecutive nights.

Let t and ^—^ be the observed times of transit ; then x is

the amount the clock has lost in 24 hours, i.e., the rate of the
clock. Therefore

(Rate of Clock) = (observed time of 1st transit)
— (observed time of 2nd transit).

Having found the rate of the clock and its error at the
time of transit, the error at Oh. Om. Os. may be found by
subtracting the loss between Oh. Om. Os. and the transit.

Stars used in finding clock error are known as " Clock
Stars."
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55. Personal Eg,uatio]i is the error made by any par-
ticular observer in estimating tbc time of a transit.

Of two observcrF, one may habitually estimate tbe transit

too soon, i.notlier may estimate it too late, but experience
shows that the error made by each observer in taking times
of transit by the same method is approximately constant.

If all observations are made by the same individual there

will be no need to take account of personal equation, because
the error made in taking a transit will be compensated by the

error made in observing the clock stars to set the clock. If

the two operations are performed by different observers, we
must allow for the difference of their personal equations.

Personal equation may be measured by an apparatus for

observing the transit of a fictitious star, i.e.^ a bright point

moved by clockwork ; in this case the actual time of its transit

is known, and can be compared with the observed time.

Personal equation is positive if the observer is too quick,

so that the correction must be added to the observed time to

get the true time, as in § 51.

56. Errors of Adjustment of the Transit Circle.—
If the transit circle is in perfect adjustment, the line of colli-

mation of the telescope must always lie in the plane of the

meridian. If not, we must correct for the small errors of

adjustment. The conditions required for perfect adjustment,

together with the corresponding corrections when these con-

ditions are not fulfilled, may be classified as follows :

—

{a) The line of coUimation should be perpendicular to the

axis about which the telescope rotates. If not, the corre-

sponding correction is called CoUimation Error.

-ih) The axis of rotation must be horizontal. Level Error.

{c) The axis must point due east and west. Deviation
(or Azimuthal) Error.

{d) The pivots resting on the Y's must be truly turned,

and form parts of the same circular cylinder. Correction for

shape of pivots.

(e) The vertical wires in the transit must be truly vertical

{i.e., parallel to the meridian) and equidistant. Verticality

and Thread Intervals.
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•57. Collimation Error.—We have seen (§ 45) that the frame-

work carrying the vertical wires in the transit telescope can be

adjusted by a screw, so that collimation error can be corrected.

Suppose, for simplicity, that no other error is present. Then the

line of collimation will always make a constant small angle with the

meridian, and this angle will measure the collimation error.

To correct this error, two telescopes, called Collimators, are

pointed towards each other, one due north, the other due south of

the instrument (n, s, Fig. 26). Both contain adjustable " coUimating

marks," formed by cross wires in their focal planes. The transit

telescope being first pointed vertically, and two apertures in the

side of its tube being uncovered, the observer looks through the

telescope s, and sees through the apertures into the telescope n.

He then brings the wires in s into coincidence with the images of

the wires in n; he then knows (from the optical theory of the tele-

scope) that the lines of collimation of n, s are parallel. Suppose
(e.g.) that they make a small unknown angle x" W. of S., and E. of

N., respectively.

He now looks through the transit telescope into the collimator s.

He adjusts the middle vertical wire of the transit to coincide with
the image of the cross mark in s, reading the graduated screw by
which the adjustment is made. The line of collimation of the
transit is now x" west of the meridian. He points the telescope into

n, and similarly adjusts the wires : the line of collimation is now x"
east of the meridian. He now turns the adjusting screw to a reading
midway between the two observed readings ; the line of collimation

is then in the meridian, and collimation error has been removed.
*58, Level Error is measured by the inclination to the horizon of

the axis of rotation of the telecope. It causes the line of collima-

tion to trace out, on the celestial sphere, a great circle inclined to

the meridian at an angle equal to the level error.

Level error is found by pointing the telescope (corrected for

collimation error) downwards over a trough of mercury (N, Figs. 24,

26, 28).

An eye-piece is provided, called a " collimating eye-piece " (EF,
Fig. 28, p. 49), containing a plate of glass If, which reflects the
light from a lamp straight down the tube. The mercury will

form a reflected image of the telescope, which may be treated just
as if it were a real telescope or collimator ; the wires in the actual
telescope will appear bright, and those in the image will appear
dark. By the law of reflection, if the middle wire coincide with its

image, the line of collimation will be vertical, and (since there is no
collimation error) there will be no level error. If not, the wires
are moved by the screw until the vertical wire coincides with its

image. The observer reads the angle through which the screw has
been turned, and thus measures the level error. The wires are then
replaced (otherwise collimation error would be introduced) and
level error is corrected by adjusting the Y's (§ 59).
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*59. Deviation Error is measured by the small angle which the
axis of rotation of the telescope makes with the plane of the prime
vertical. It causes the line of coUimation of an otherwise correctly
adjusted transit circle to describe a great circle through the zenith
whose inclination to the meridian is equal to the deviation error.

Deviation error can be discovered by observing the times of upper
and lower transit of a circumpolar star, such as the pole star.

Suppose (e.g.) that the telescope axis points slightly south of east;
then it is readily seen by a diagram that when the telescope is

pointed north of the zenith, the line of collimation will be slightly

east of the meridian. Then, at upper transit, if the observed cir-

cumpolar star is north of the zenith it will reach the middle wire
before reaching the meridian. At lower transit it will not reach the
wire till after passing the meridian. Hence, the time from upper to

lower transit will be rather greater than 12h., and the time from
lower to upper transit will be rather less than 12h. By observing
the difference of the intervals the deviation error can be found.

In many observatories, the Y's of the transit circle can be adjusted
by screws, one moving vertically, to correct for level error, the
other horizontally, to correct for deviation error.

When these errors are corrected, the cross wires of the collimators

are brought into coincidence with the middle wire of the telescope
when pointed horizontally.

*60. The correction for the shape of the pivots is rather compli-
cated, but, in a good instrument, it should be very small. When
the pivots are much worn by friction, they should be re-turned.

The errors may be measured by making a small mark on the end
of each pivot, and observing, by means of reading microscopes, the
motions of the marks as the instrument is slowly turned round. If

the pivots are true, the marks should remain fixed, or describe circles.

*61. Verticality of the Wires maybe tested by observing one of

the collimators, whose cross wires are adjusted as in § 59. If the
cross wires always appear to intersect on the middle wire of the
transit when the instrument is turned through any small angle, we
know that the middle wire is vertical.

*62. Wire Intervals.—By "Equatorial "Wire Intervals" are
meant the intervals of time taken by a star on the equator in pass-

ing from one vertical wire of the transit to the next.

If the intervals between successive wires are unequal, the mean
of the times of transit over the wires will not in general be the
same as the time of transit over the middle wire. We may imagine
a straight line so drawn across the field of view that the time of

transit across it is exactly equal to the mean of the times of transit

over the five or seven wires. This line is called the Mean of the "Wires.
By carefully determining the equatorial wire intervals, the veiy

small interval between the transits over the mean of the wires and
over the middle wire can be found.

For a star not in the equator, the wire intervals are proportional

to the secant of the declination. This follows from Sph. Gcom. (17).
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(b) CORRECTIONS REQUIRED IN FINDINQ THE DECLINA-
TION OF A STAR.

63. Zenith Point.—In § 45 wo stated that the pointer

of the transit circle is usually adjusted to read 0° 0' when
the line of collimation is pointed to the zenith. But it would
be very difficult to adjust the microscopes to give a mean
reading of exactly 0° 0' 0" for the zenith. Hence it is neces-

sary to determine the zenith point, or zenith reading, and
in calculating the meridian Z.D. of any star, this must be
subtracted from the reading for the star.

Let ^and iVbe the readings when the telescope is pointed

to the zenith and nadir, respectively, ^and H' the readings

for the north and south points of the horizon; then evidently,

Z=S-W = iV-180° = IT' -270°.

Also, if a? is the reading for the meridian transit of any star,

then star's meridian Z.D.= a;— .^, if north of the zenith,

or, = 360°— (x—Z), if south of the zenith.

64. To find the Ifadir Point, use is made of the CoUi-
mating Eye Piece, already mentioned in § 56, and
represented in Fig. 28. It consists of

two lenses U, F, between which is a

plate of glass, Jf, inclined at an angle of

45° to the axis. This plate illuminates

the wires from above by partially re-

flecting the light from a lamp on them,

at the same time allowing them to be
seen through the eye-glass, E.

\ The telescope is pointed downwards
over the trough of mercury, iV; and
the rays of light from any one of the

wires, Q^ will produce by reflection a

distinct image of the wire at q in the

focal plane. By turning the telescope

with the tangent screw, the fixed hori-

zontal wire may be made to coincide

with its image ; it will then be verti-

"cally over the " optical centre" of the ^J^.
object-glass (§ 44). The line of colli- ' V^
mation will, therefore, point to the yig. 28.
nadir, and the nadir reading is given by
the pointer and microscopes. Subtracting 180°, we have the

the zenith reading.



50 ASTRONOMY.

65.—Determination of Horizontal Point.—Method
of Double Observation.—Both the horizontal reading and
the meridian altitude of a star can be determined by observ-

ing the star, both directly and by reflection, in a trough of

mercury placed in a suitable position (Jf, Tigs. 26, 29).

Fig. 29.

Pig. 29 illustrates the method of double observation. Let
FZ be the direction of the line of collimation corresponding

to the zero reading, FK the horizontal direction, PS and
MTP the directions of the star viewed directly and its image
viewed by reflection. The reading of the circle for the direct

observation is the angle ZFS^, the reading for the reflection

is the angle ZFM,
Since the angles of reflection and incidence 8'MZ', TMZ'

at the mercury are equal, and MS', PS are parallel, we have
evidently Z SPS= S'MH' = TMK= MPH-,

.'. star's altitude, SP:E= | SPM;
= i (ZPM-ZPS)
= halO the difference of the two readings.

Also : Horizontal reading, ZPII= | {ZPM-\-ZPS) ;

= half the sum of the two readings.

Subtracting 90° from the north horizontal point, the zenith

point is found.
*66. In using this method with the transit circle of a fixed

observatory, the star will remain sufficiently long in the field of

view to allow of both observations being made at the same transit,

and the fact of the star not being quite on the meridian will not
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affect the results pewjeptibly. But there will not be time to read

the circles by means of the four microscopes, between the two
observations. This difficulty is obviated by proceeding thus :

—

Before the first observation, poinb the telescope (by means of the

pointer) in such a direction that the reflection of the star in the

mercury will cross the field of view during fhe transit ; for this

purpose the star's meridian altitude must be known approximately.

Clamp the telescope, and read the microscopes. When the star

appears in the field of view, adjust the moveable horizontal wire (by

means of its graduated screw) till it crosses the star, keeping the

telescope fixed. Now unclamp the telescope, and point it to the star

direct, turning it with the tangent screw until the moveable horizontal

wire again crosses the star. After the observation, read the graduated

screw of the horizontal wire, and also the pointer and microscopes.

Since the star is bisected by the same wire at each observation,

the difference in the readings gives the angle through which the

telescope was rotated, and this angle is evidently double the star's

altitude. Half the sum of the readings gives what would be the

reading if the moveable wire were pointed horizontally. This must
be corrected by adding the angular interval between the moveable
and fixed wires as determined from the graduated screw, and we
then have the reading for the horizon point when the fixedwire is used

.

67. Polar Point.—^In order to find the declination of a

star by means of tlie transit circle, it is necessary to know
the reading wlien tlie telescope is pointed to the pole. This

may be found, just as in § 28, by observing the upper and

lower transits of a circumpolar star. The mean of the two
readings gives the polar point.

The N.P.D. of any star is found by taking the difference

of the readings for the star and the polar point. The decli-

nation is, of course, the complement of the IS'.P.D.

We may also find declinations thus :—Since angles are

measured from the zenith northwards, it is evident (by draw-

ing a figure or otherwise) that the reading for the point of

the equator above the horizon is given by
Equatorial point = (Polar point) -|- 270°.

Since the decl. is the angular distance fromthe equator, we have
(North Decl.) = (Reading for star) - (Equatorial point).

If the star transits north of the zenith, its reading must be
increased by 360°.

The latitude of the observatory is given by
Latitude = Altitude of pole

= fN'orth horizontal point)— ^Polar point).
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*68, Errors of Graduation.—The operation of testing the accuracy
of the graduations on the circles of the transit circle is very long
and laborious. One of the two graduated circles is so attached to

its axis, so that it can be turned through any angle relative to the
telescope. Then, by reading the microscopes belonging to both
circles, every graduation on one circle is compared with every
graduation on the other circle, and any errors of graduation are thus
detected and measured. The effect of such errors is much reduced
by using all the tour microscopes, and taking the mean of their

readings.

*69. Errors due to Imperfect Centering of the Circles.—By
taking the mean of the microscope readings, all errors due to imper-
fect centering are eliminated. In proof, let us suppose that only

two microscopes {A, G, Fig. 26) are used, but that these are opposite

to one another. If the cii'cle is truly centred, with its centre on
the line AG, the two readings will differ by 180°. If, now, the gradu-
ated circle is displaced, without being rotated, till its centre is at a
distance h from AG, then the points of the scale, now under AC,
will be at distances h from the points formerly under AG, both being
displaced in the same direction. Hence, since both readings are

measured the same way round the circle, one will be increased

and the other will be decreased by the same angle. The arithmetic

mean of the two readings will, therefore, be unaltered by the dis-

pkicement of the centre, and will be independent of any small error

due' to imperfect centering. The same is, of course, true of the

mean reading for the other pair of microscopes, B, D.
The error in centering may be discovered by taking the difference

of the readings of a pair of opposite microscopes. This difference

should be ISO' if the circle is properly centred ; if not, the amount
by which it differs from ISO'' will determine how much the centre of

the circle is to one side or the other of the line joining the centres

of the pair of microscopes.

*70. Error of Euns.—In the reading microscopes, one turn of the
micrometer screw should move the parallel wires over a space corre-

sponding to exactly 1' on the graduated circle, so that the wires
should be brought from one mark of the circle to the next by exactly

five turns of the screw. In practice it will probably be found that

rather more or rather less than five turns will be necessary. In this

case the readings of the teeth and of the micrometer screw-head will

differ slightly from true minutes and seconds of arc on the circle,

and a correction will be required. This error is called Error of

Euns.

*7l. Collimation, Level and Deviation Errors have no appre-

ciable effect on observations for declination, provided that such

errors arc small compared with the star's N.P.D. Hence, they may
be left out of account, except in observations of the Pole Star.
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72. General Remarks.—We first described the Transit

Circle, and the methods of "taking a transit" ; we afterwards

described the corrections which must be applied to the results

of the observations in finding the right ascension and decli-

nation of a star. But in practical work the various errors

must bo detennined before any observation can be made.

Among tlicse, collimation, level and deviation error, and the

nadir point should be found daily, as they may be affected by
heat or cold, or by shaking the instrument.

Clock error and rate are also determined daily by observing

certain " clock stars." The accuracy of the corrections may
be tested by observing various "known stars" of different

declinations. If the corrections have been accurately made,

the observed right ascensions and declinations should agree

with their values as given in astronomical tables.

Before determining clock error and rate by means of a
" clock star," the R.A. of one such star must be known.
Since the ll.A. is measured from the first point of Aries, that

point must first be found. The method of finding it will be

described in Chap. IV.

73. Observations on the Sun, Moon, and Planets.—
The positions of the Sun, Moon, and Planets are defined by
the coordinates of their centres. In finding these, the

angular diameters must be taken into account.

In observing the Moon or a planet, the fixed horizontal wire

is adjusted to touch the illuminated edge of its disc, and the

times at which its edge touches the vertical wires are ob-

served. To find the coordinates of the centre, a correction

is made for the angular semi-diameter of the body, which
must be determined independently. It must not be forgotten

that the image formed by the telescope is inverted.
In observing the Sun, the semi-diameter may be found

during the observation by adjusting the moveable horizontal

wire to touch one edge of the disc, while the fixed wire
touches the other edge. The reading of the micrometer
screw gives the Sun's angular diameter. In finding the time
of transit, the times of contact of the disc on arriving at and
leaving each wire are separately observed ; their arithmetic

mean for any wire is the time of transit of the centre.
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Section II.- -Instruments adapted for Observations off the

Meridian.

74. The Transit Circle can only be used to observe celestial

bodies during the short period before and after their transit

that they remain in the field of view. It is, therefore, un-

suited for continuous observation of a celestial body, such as

is required more particularly in Physical Astronomy. Eor
this purpose, a telescope must be mounted in such a way that

it can be pointed in any required direction, or moved so as to

keep the same body always in the field of view. There are

two such forms of mounting, and the telescopes thus mounted
are called the Altazimuth and the Equatorial.

Fig. 30.

75. The Altazimuth.—In this instrument, a telescope,

S2] is supported so that it can turn freely about a horizontal

axis, CD, sometimes called the secondary axis. This

secondaiy axis, with the attached telescope, is capable of

turning about a fixed vertical axis, AJB, sometimes called the

primary axis, which is supported at its upper and lower

ends as shown in the figure.

Both axes are provided with graduated circles, GIT, UV^
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attached to, and turning with them. Each circle is read

by means of one or more "pointer " microscopes, Jf and iV.

There arc also clamps, furnished with tangent screws, by
means of which the circles may be fixed in any desired posi-

tion, or rotated slowly if required. At (7 is a counterpoise,

which balances the telescope and the circle UVj and so

prevents their weight from bending the axis A B.

By rotating the whole instrument about the vertical axis

AB, the telescope can be brought to any required azimuth.

If now the circle GJIhc clamped, the telescope can be turned

about CD to any required altitude. The microscope iV
should indicate zero when the telescope is pointed in the

plane of the meridian, and the microscope M should indicate

zero when the telescope is horizontal. If now the telescope

be pointed so that a star is in the middle of its field of view,

the readings of the two microscopes iV, Jfwill give the star's

azimuth and altitude respectively. The time of observation

being also known, the position of the star on the celestial

sphere is completely determined, and its R.A. and decl. can

be calculated if required. But for observations of this class,

the altazimuth is not nearly so reliable as the transit circle.

As the altazimuth possesses two independent motions, while
the transit circle possesses only one, the former instrument
is liable to a far greater number of errors of adjustment

;

moreover, its telescope is far less firmly and rigidly supported,

and the instrument is therefore more liable to bend.

A large altazimuth in Greenwich Observatory is used for

observing the Moon's motion, when it is so near the Sun
that it cannot be accurately investigated by meridian observa-

tions alone.

A portable telescope, mounted on a tripod stand, such as is

commonly used for observing the stars at night, is an altazi-

muth unprovided with graduated circles.

A Finder {F) is usually attached to a large altazimuth,

whose field of view is of small angular breadth. This is a

small telescope of lower magnifying-power, with a larger field

of view, the centre of which is marked by cross wires. To
point the large telescope to any celestial body, the altazimuth

is so adjusted that the body is seen in the centre of the finder.

It will then be in the field of view of the large telescope.
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'76. The Equatorial (Fig. 31).—If we suppose an alta-

zimuth inclined so that its primary axis, instead of being

vertical, is pointed in the direction of the pole, we shall have
an Equatorial. In this instrument the framework carrying

the telescope turns as a whole about about the primary axis

AB, which is supported at A and B, so as to point towards

the pole. Attached perpendicularly to this axis, and turning

with it, is a graduated circle, called the Hour Circle, whioh
read by a " pointer " microscope iV.

The framework AB carries a secondaiy axis perpendi-

cular to the primary axis, and the telescope 8Ti8 attached

perpendiculai4y to this secondary axis, about which it

is free to turn. The axis of the telescope carries another

graduated circle called the Declination Circle which is

read by the " pointer" microscope M.

Fig. 31.

The declination circle should read zero when the telescope
is pointed in the plane of the equator, and the hour circle

should read zero when the telescope is in the plane of the
meridian. If now the telescope is pointed towards any
celestial body, the readings of the t\^'o microscopes will

give, respectively, the declination and hour angle of the
body.

"When it is required to observe the same body continuously
with the equatorial, the declination circle is clamped, and
the observer must slowly rotate the hour circle by hand, so

as to keep the body observed in the field of view.
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In large instruments the hour circle can be attached to a
clamp which is worked by clockwork in such a manner that
the whole framework turns uniformly round the primary axis
AB once in a sidereal day. This motion will ensure that the
star under observation shall always remain in the centre of

the field of view.

The pointer-microscope of the hour circle may be made to

revolve with the clamp, and to mark zero when the telescope is

pointed towards the first point of Aries ; its reading will then
give the right ascension of any observed star. But the decli-

nation and right ascension cannot be determined with any
great degree of accuracy by reading the circles of the equa-
torial. There are the same difficulties as in the altazimuth

;

moreover, the primary axis, being inclined to the vertical, is

more liable to bend under the weight of the telescope.

The clockwork by which the equatorial is driven could not
be regulated by an ordinary pendulum, as this would make
the telescope move forward in a series of jerks, one at eveiy
beat. For this reason, a conical pendulum revolving uniformly
must be used. The reader will find the principle of the
conical pendulum explained in most text-books on elementary
dynamics; a working example maybe seen in the "Watt's
Governor " of a steam-engine.

In most modem equatorials, the primary axis is not sup-
ported as in Fig. 31, but on a pillar just underneatli the
secondary axis. The advantage is that the primary axis is

less liable to bend than when supported at its two ends A^ B.

77. Uses of the Equatorial.—Amongst these the fol-

lowing may be mentioned :

—

(i.) " Differential " observations, «.(?., micrometric obser-

vations of the relative distances and positions of two near
stars simultaneausly visible.

(ii.) Observations of the appearance, structure, and magni-
tude of the celestial bodies.

(iii.) Stellar photography,

(iv.) Spectroscopic analysis.
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78. Micrometers.—Any instrument used for measuring
the small angular distance between two bodies simultaneously

visible in tbe field of view of a telescope is called a

Micrometer. Thus tbe moveable horizontal wire in the

transit circle, with its graduated screw, is a micrometer, for

if the instrument be so adjusted that the fixed wire crosses

one star, while the moveable wire crosses another neighbouring

star, the distance between the Avires, as read off on the screw
head, gives the difference of declination of the stars. The
moveable wire in the field of view of the reading microscope

is identical in principle Avith a micrometer.

79. The Screw and Position Micrometer (Pig. 32)

serves to findboth the angular distancebetween two neighbour-
ing stars and the direction of the line joining them. It contains

a framework of wires placed

in the focal plane of the tele-

scope. Two of these wires

are parallel, and one of them
can be separated from the

other by turning a screw with
a graduated head. A third

wire, which we will call the

"transverse wire," is fixed

in the framework perpendi-

cular to the two former. The
whole apparatus, together

with the eye piece of the

telescope, can be rotated so

that the wires may appear in any required direction across the

field of view. A graduated circle, called the Position Circle,

is attached to the eye-piece, and measures the angle through
which it has thus been turned. Besides the wires, the frame-

work contains a transverse strip of metal marked with notches,

at distances apart corresponding to complete turns of the micro-

meter screw, an arrangement similar to that employed in the

reading microscope (§ 45).

In observing two stars, the equatorial and micrometer are

so adjusted that one of the stars may appear at the inter-

section of the two fixed wires, while the other appears at the

intersection of the fixed and moveable wires.
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The number of notches of the scale, together with the

reading of the screw-head, determine the distance between

the images of the stars ia turns and parts of a turn of the

screw-head. To find the angular distance between the stars,

we only require to multiply by the known angular distance

corresponding to one turn of the screw.

The reading of the position circle determines the direction

of the small arc joining the stars. The position-circle should

read zero if the stars have the same R.A. Then the reading

in any other position will determine their position angle,

i.e., the angle which the line joining the stars makes with a

declination circle through one of the stars.

*80. Dollond's Heliometer is another form of micrometer, de-

pending on the principle that if the object-glass of an astronomical
telescope be cut across in two, each half will form an image of the
whole field of view, in the same way as if the lens were still com-
plete.f In the Heliometer one half of the object-glass can be made
to slide along the other by means of a graduated screw.

Fio. 33.

Suppose that we want to measure the angular diameter of the Sun
(8, Fig. 33). When the halves of the object-glass are togethei-, so
that their optical centres coincide, one image of the Sun will be
formed. When the two halves are separated, two separate images
will be formed in the focal plane of the telescope, and will be seen
simultaneously. The half-lenses are separated, till the two images
touch, as ah and he. Let 0, 0' be the optical centres of the two
halves of the objective. The distance 00' is read off on the screw-
head ; from this reading the Sun's angular diameter may be found.
For at h, the point of contact of the images, the half-lens forms

an image of the lower limb B, and the half-lens 0' forms an ima^e of
the upper limb A. Hence, BOh and AO'b are straight lines, and ObO'
is the angular diameter BhA. But the focal length Ob is known
Hence, if 00' is also known, the angular diameter ObO' can be found.

t To show this, it is only necessary to cover up half the object-
glass of an astronomical telescope. (N.B.

—

Not an opera-glass.)

ASTROl*'. F
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In measuring the angular distance between two stars, the helio-

meter is adjusted so that the image of one star formed by one half-

lens coincides with the image of the other star formed by the
other half-lens 0'. The principle is the same as before.

*81. To find the angular distance corresponding to a revolution
of the micrometer screw, the simplest plan is to observe the Sun's
diameter, and to compare the reading with its known value. The
latter is given in the Nautical Almanack for every day at noon.
To test the zero reading of the position circle, the equatorial

is pointed to a star near the equator, and fixed, and the micrometer
is turned till the diurnal rotation causes the star to run along the
transverse wire. The circle should then read 90^.

82. Stellar Photography.—Per pliotograpliic purposes,

the equatorial is driven by clockwork, carrying with it a

sensitized plate, on which an image of the heavens is projected.

In this way a photograph of part of the sky is obtained, and
on such a photograph the distances and relative positions of

the various stars, nebulee, &c., can be accurately measured.

Moreover, by continuing the exposure sufficiently long, even
the faintest rays oi light will produce an impression on the

photographic plpte ; and it is thus possible to detect stars and
nebulae which would be invisible to the eye.

*83. Spectrum Analysis.—A description of the spectrum is given
in Wallace Stewart's Text-Book of Light, Chap. YIII., and the spec-

troscope is described in § 91 of the same treatise.

A detailed account of the methods of spectrum analysis would be
out of place in this book, as the subject belongs to the domain of

Physical Astronomy. The general principle is this :—We can, by
means of the spectroscope, analyse the constituent waves of the
light rays which reach us from the Sun and stars. We can compare
these constituents with those emitted or absorbed by the various
chemical elements in a state of vapour. Such comparisons enable
us to infer what chemical elements are present in different celestial

bodies.

84. Other Instruments.—The instruments described in

this chapter are all such as are used in fixed observatoriss.

Besides these, certain portable instruments are used in astro-

nomical observations. Among the latter class the Zenith
Sector will be described in the next chapter, in connection

with the determination of the Earth's form and radius ; and
the Sextant and Chronometer will be explained in treating of

the methods of finding latitude and longitude at sea.
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EXAMPLES.—II.

1. Describe the Altazimuth. "Why is it not so well suited for

continuous observations as the equatorial, and, in particular, why is

it quite unsuitable for stellar photography ?

2. Show that the altitude of a star is greatest when the star is on
the meridian.

3. From the result of Question 2, show how the meridian zenith

distance of a star might be found by observing its altitude with an
altazimuth.

4. How may we most easily set the astronomical clock ?

5. Show that the rate of a clock might be found by observations

on successive nights with a7iy telescope provided with cross wires,

and pointed constantly in a fixed direction.

6. Distinguish, with examples, direct and retrograde angular
motion. Is R.A. measured direct or retrograde ?

7. Show that in latitude 45° the interval between the time of

any star's passing due east and its time of setting is constant.

8. Show that, if a transit circle be not centred truly, the con-

sequent error can be eliminated by taking the mean of the readings

of the microscopes.

9. In a double observation made with the transit circle, the

readings of the pointer directly and by reflection are 59° 35' and
125° 20' ; the means of the microscope readings are in the two cases
3' 42" and 1' 13'. The moveable wire reads + 2', and the reflected

star runs along the fixed horizontal wire. Find the zenith reading.

10. Explain how it is that photography has revealed the existence

of stars which are so faint as to be invisible.

11. Find the decl. of a Ophiuchi from the following observations,

made at Greenwich (lat. 51° 28' 31" N.) :—Pointer reading 321° 10',

microscope readings, 1' 2", 0' 50", 0' 46", 0' 58", the zenith reading

being 0° 0' 16".

12. Find also the R.A. of a Ophiuchi. Given : Time by sidereal

clock = 17h. 29m., the numbers of seconds at the transits over the

five wires being 37-4s., 50-2s., Im. 2-98., Im. 1528., Im. 27-4s. Clock

error = — 10"6s.
;
personal equation = +0'4s.
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EXAMINATION PAPER.—II.

1. Classify the various observations which are taken in astro-

nomical investigations, and state the respective instruments which

may be used for those observations.

2. Define the right ascension and declination of a star, and describe

shortly the principles of the methods of finding them.

3. Describe how the time of transit of a star across each of the

five or seven wires of a transit instrument is observed, and explain

how the time of transit across the meridian is deduced. Define the

equatorial interval of two wires.

4. Describe the Reading Microscope, and show how the zenith

distance of a star may be found by direct observation with the

transit circle.

5. Enumerate the errors of a transit instrument, and explain how
level error may be measured and corrected.

6. Explain what is meant by collimation error, and draw a diagram

showing the circle traced out on the celestial sphere by the line of

collimation in an instrument which has a small collimation error

east of the meridian. Is the correction, to be applied to the times

of transit, positive or negative in such a case ?

7. Describe the Equatorial, and explain the adjustments and

principal uses of the instrument.

8. Describe the Screw and Position Micrometer, and explain how
the value of a turn of the screw may be found.

9. What is meant by the error and rate of a clock, and the personal

equation of an observer? How are they usually found ?

10. On 1st March, 1872, the time of transit of Librx, at Green-

wich, was observed to be 15h. 9m. 6*15s., and on the 3rd March the

observed time was 15h. 9m. 4'73s. The tabular E.A. of the star was

15h. 10m. 7"25s. Find the error and rate of the clock on 3rd March.



CHAPTER III.

THE EAUTH.
Section I.

—

Flienomena depending on Change of Position on

the Earth.

85. Early Observations of the Earth's Form.—One
of the first facts ascertained by the early Greek astronomers

was that the Earth's surface is globular in form. Even
Homer (b.c. 850 circ.) speaks of the sea as convex, and
Aristotle (b.c. 320) gives many reasons for believing the

Earth to be a sphere. Among these may be mentioned the

appearances presented when a ship disappears from view. If

the surface of the ocean were a plane, any person situated

above this plane would (if the air were sufficiently clear) see

the whole expanse of ocean extending to the furthermost

shores, with all the ships sailing on its surface. Instead of

this, it is observed that as a ship begins to sail away its

lowest part will, after a time, begin to sink below the appa-

rent boundary of the surface of the sea ; this sinking will

continue till only the masts are visible, and, finally, these

will disappear below the convex surface of the water between
the ship and the observer.

Another reason is suggested, by observing the stars. If

the Earth's surface were a plane, any star situated above the

plane would be seen simultaneously from all points of the

Earth, except where concealed by mountains or other

obstacles, and any star below the plane would be everywhere
simultaneously invisible. In reality, stars may be visible

from one place which are invisible from another ; and all the

appearances presented were found by the Greeks to agree

with what might be expected on a spherical Earth. Eratos-

thenes even made a calculation of the Earth's size from the
distance between Alexandria and Assouan and their latitudes

(§91) deduced from the Sun's greatest meridian altitudes.

He found the circumference to be 250,000 stadia, or furlongs.

Lastly, the Earth's spherical form will account for the
circular form of the Earth's shadow in a lunar eclipse.
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86. General Effects of Change of Position.—In § 5,

we showed that, owing to the great distance of the stars, they

are seen in the same direction whatever be the position of

the observer. In confirmation of this fact, it is found by-

observation that the angular distance between any two stars

(after allowing for refraction) is observed to be independent
of the place of observation.

But the directions of the zenith and horizon vary with the

position of the observer. If we suppose the Earth spherical,

the vertical at any point on it will be the radius drawn from
the Earth's centre, while the plane of the horizon will be
a tangent plane to the Earth's surface ; both will depend
on the place. This circumstance accounts for the difference

in appearance of the heavens as seen simultaneously from
different places.

87. Earth's Rotation.—The apparent rotation of the

heavens is accounted for by supposing that the stars are at

rest, and that the Earth rotates once in a sidereal day, from
west to east, about an axis parallel to the direction of the

celestial pole. The observer's zenith, horizon and meridian
turn about the pole from west to east, relatively to the stars,

and this causes the hour angles of the stars to increase by 360°

in a sidereal day, in accordance with observation.

It is impossible to decide from observations of the stars

alone whether it is the Earth or the stars which rotate, just

as when two railway trains are side by side it is very difficult

for a passenger in one train, when observing the other, to

decide which train is in motion. That the Earth rotates has,

however, been conclusively proved by means of experiments,

which will be described when we come to treat of dynamical
astronomy.

88. Definitions.

—

The Terrestrial Poles are the two
points in which the Earth's axis of rotation meets its surface.

The Terrestrial Equator is the great circle on the
Earth whose plane is perpendicular to the Earth's axis.

A Terrestrial Meridian is the section of the Earth's

surface by a plane passing through its axis. If we suppose
the Earth to be a sphere, a meridian will be a great circle

passing through the terrestrial poles.
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89. Phenomena depending on Change of Latitude.—
Assuming the Earth to be spherical, let p Oqp'r be a meridian

section, 5 being the Earth's centre, p, p the poles, q, r points

on the equator. Then, if an observer is situated on the

meridian at 0, the direction of his celestial pole P will be

found by drawing OP parallel to the Earth's axis^'C^ (§ 87),

while his zenith Z will lie in CO produced.

Fig. 34.

Since OP is parallel to CpP^, therefore,

angle ZOP= OCp,
.-. altitude of pole at = 90°—^OP = 90°- OC^? = qCO.

13ut the latitude of has been shown to be the altitude of

the pole ; therefore

The latitude of a place on the Earth is the angle
subtended at the Earth's centre hy the arc of the
meridian drawn from the place to the equator.

Since the angle qCO is proportional to the arc qO,
The latitude of a place is proportional to its

distance from the equator.
Suppose the observer to go northwards along the meridian

from to 0\ then, from what has just been shown, the

altitude of the pole increases from Z qCO to Z qC0\ hence

The increase in the altitude of the pole (= /. OCO')
is proportional to the arc 00\ i.e., to the distance
travelled northwards.
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90. Southern Latitudes.—To an observer situated in the
southern hemisphere of the Earth, as at 0", the North Pole of

the heavens is below, and the South Pole, jt?" is above the
horizon. The South Latitude of the place is measured by
the altitude of the South Pole, ^", and is equal to the
angle qCO".
At the terrestrial equator, the altitude of the pole is

zero ; hence the pole is on the horizon. At the terrestrial

N'orth Pole p, the altitude of the celestial pole is 90", there-

fore the celestial pole coincides with the zenith. Hence,
also, an altazimuth, if taken to the North Pole, would there

become an equatorial.

Fig. 35.

At the Earth's North Pole, those stars are only visible

which are north of the equator, and they always remain
above the horizon, di travelling southwards, other stars,

whose declination is south, are seen in the south parts of the

celestial sphere, and on reaching the Earth's equator all the

stars will be above the horizon at some time or other, but the

Pole Star will only just rise above the horizon, near the

north point. After passing the equator, the Pole Star and
other stars near the North Pole disappear.
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91. Radius of the Earth.—The Earth's radius
may be found by measuring the distance between
two places on the same meridian, and finding their
difference of latitude.

Let the places of observation be 0, 0' (Fig-. 35). Let the

latitudes qCO, qCO' be I and V degrees respectively, and let

the length 00' = s. We have, supposing the Earth spherical,

angle OCO' _, arc 00'
.

3G0° circumference of Earth
'

.\ Earth's circumference = s x
j,
—

.

;

and Earth's radius = circumference ^ 180 *

27r TT I'-
1'

which determines the Earth's radius in terms of the data.

By observations of this kind the Earth's radius is found to

be very nearly 3,960 miles. Eor many purposes it will be
sufficiently approximate to take the radius as 4000 miles.

Its circumference is found by multiplying the radius by 27r,

and is about 24,900 miles, or, roughly, 25,000 miles.

Conversely, knowing the Earth's radius, we can find the
length of the arc of the meridian corresponding to any
given difference of latitude.

92. Metre, Nautical Mile, Geographical Mile,
Fathom.—The Erench Metre was originally defined as the
ten-millionth part of the length of a quadi-ant of the Earth's
meridian.

A Nautical mile is defined as the length of a minute of

arc of the meridian. Thus a quadrant of the meridian con-
tains 90x60, or 5,400 nautical miles, and the Earth's
circumference contains 21,600 nautical miles.

A Fathom is the thousandth part of a nautical mile. It

contains almost exactly six feet.

A Geographical Mile is defined as the length of a minute
of arc measured on the Earth's equator. Taking the Earth
as a sphere, the nautical mile and geographical mile are equal.
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93. The " Knot."—Use of the Log line in Naviga-
tion.—A nautical mile is sometimes called a knot. But the

Knot is more correctly the unit of velocity used in navigation,

being a velocity of one nautical mile per hour. Thus, a ship

sailing 12 knots travels at 12 nautical miles an hour.

The velocity of a ship is measured by means of the Log
Line. This consists of a "log," or float, attached to a cord

which can unwind freely from a small windlass. The log is

"heaved " or dropped into the sea, and allowed to remain at

rest, the cord being " paid out " as the ship moves away. By
measuring the length paid out in a given interval of time

(usually half a minute), the velocity of the ship may be

found. To facilitate the measurement, the line has knots

tied in it at such a distance apart that the number of knots

paid out in the interval of time is equal to the number of

nautical miles per hour at which the ship is sailing. It is

from these that the unit of velocity derives the name of knot.

Now one nautical mile per hour = — nautical mile per

half-minute. Hence, for this interval, the knots should be

tied on the line at intervals of -— of a nautical mile apart.

94. From the definitions of §§ 92, 93, it is easy to reduce

metres or nautical miles to ordinary feet and miles, and
conversely.

Examples.

1. To find the number of miles in an arc of 1°.

An arc of 1° = ci^cu^^ference of Earth _ 24900 ^.,^^ ^ 69,4miles.
360 360

"

2. To find the number of feet in one fathom.

By Ex. 1, 60 nautical miles = 69J ordinary miles ; i.e., 60,000

fathoms = 69^ x 5280 feet;

.-. 1 fathom = ^^^ ^ ^^^Q
feet = 6-086 feet.

60000

3. To express a metre in terms of a yard.

By definition, 40,000,000 metres = Earth's circumference =24,900
miles

;
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95. Terrestrial Longitude.

—

The Longitude of a
place on tlie Earth is the angle between the terrestrial

meridian through that place, and a certain meridian fixed on
the Earth, and called the Prime Meridian.

Thus, in Eig. 36, if PRP' represents the prime meridian,

the longitude of any place q is measured by the angle RPq.
The longitude of q is also measured by RQ, the arc of the

equator intercepted between the meridian of the place and
the prime meri(h[an.

Fig. 36.

Since the latitude of q is measured by the arc Qq, we see

that latitude and longitude are two coordinates defining the

position of a place on the Earth just as decl. and E.A., or

celestial latitude and longitude define the position of a star.*

The choice of a prime meridian is purely a matter of con-

venience. The meridian of Greenwich Observatory is univer-

sally adopted by English-speaking nations. The French use

the meridian of Paris, andthe University of Bolognahas recently

proposed the meridian of Jerusalem as the universal prime me-
ridian. Longitudes are measured both eastward and westward
from the prime meridian, from 0° to 180°, not from 0° to 360°.

*Note, however, that terrestrial latitude and longitude, being
referred to the equator, correspond more nearly to declination and
right ascension than to celestial latitude and longitude.
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96. Phenomena depending on Change of Longitude.

(i.) Let q, r (rig. 37) be two stations in tlie same latitude,

and let the longitude of q be L° west of r, so tbat Z rPq = X°.

As the Earth revolves about its axis at the rate of 360° per

sidereal day, or 15° per sidereal hour, the points j, r will

be carried forward in the direction of the arrow. After an
interval of -jL- Z sidereal hours, q will have revolved through
Z° and will arrive at the position originally occupied by r.

Hence the appearance of the heavens to an observer at q will

be same as it was, ^^ L sidereal hours previously, to an

observer at r. The stars will rise, south, and set yV L hours

earlier at r than at q,

(ii.) HA, B be two places in different latitudes, whose
difference of longitude is Z°, the transits of a star at A and

B will take place when the meridian planes PAP' and
PBP' (which are evidently also the planes of the celestial

meridians of A, B respectively), pass through the direction of

the star. Hence, in this case also, the transits will occur

y^g- Z hours earlier at B than at A.

Now an observer at B will set his sidereal clock to indicate

Oh. Om. Os. when T crosses the meridian of B. When T
transits at A, the clock at B will mark -^-^ Z h., but an

observer at A will then set his clock at Oh. Om. Os. Hence,

if the two clocks be brought together and com];a''ed, the

clock from B will be -^-^ L h. faster than the clock from A.
This fact may be expressed briefly by saying that the
" local " sidereal time at B is -^-^L h. faster than the local

sidereal time at A.

Since the Earth makes one revolution relative to the Sun
in a solar day, in like manner the local solar time at B
will be -^L solar hours faster than the local solar time at A.

Therefore, whether the local times be sidereal or solar, we
have Longitude of A west ofB = long, ofB east ofA

= 15 [(local time at JJ)— (local time at ^)].

In particular, Long, west of Greenwich

= 15 [(Greenwich time)— (local time)}

= 15 (Greenwich time of local noon).
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97. To find the length of any arc of a given
parallel of latitude, having given the difference of
longitude of its extremities.

[A small circle of the Eartli parallel to the equator is

called a Parallel of Latitude.]

J.et qr be the given arc of the parallel hqrk, I its latitude,

and let qPr^ the difference of longitudes of q and r, he = L°.
Tict a he the radius of the Earth.

Fig. 37.

If the meridians of q., r meet the terrestrial equator in

Q, E, we have, by Sph. Geom. (17),

arc qr = arc QR X sin Fq = arc QE x cos I.

But arc QR : circumference of Earth = Z° : 360°;

.-. arc QR = 27raL/SeO = -^^ iraZ
;

180

arc qr = n-g/y cos I

180~'

CoROLLAEY.—Siucc 1' of arc of the equator measures a

geographical mile, it follows that

In latitude 7, the arc of a parallel corresponding to
1' difference of longitude is cos I geographical miles.
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98. Changes of Latitticle and Longitnde due to a
Ship's Motion.—Suppose a ship, in latitude I, to sail

m nautical miles in a direction^ degrees west of north.

If m is small, we may easily see (by drawing a diagram)

that the ship would arrive at the same place hy sailing

mco^A nautical miles due north, and then sailing msmA
nautical miles due west. Hence,

The ship's latitude will increase by m ao^A minutes (§ 92).

Its W. long, will increase hjm miA sccZminutes (§ 97, cor.).

Note.—The shortest distance between two points on a sphere is

along a great circle. Hence, the shortest distance between two
places in the same latitude is less than the arc of the parallel joining

them (except at the equator). But the difference is imperceptible

when the arc is small.

99. To explain the Gain or Loss of a Day in going
round the World.—If a traveller, starting from a place A,
go round the world eastward, and if, during the voyage, the

Earth revolves n times relative to the Sun, the traveller will

have performed one more revolution relative to the Earth in

the same direction, and therefore w+ 1 revolutions relative to

the Sun. Hence, to a person remaining at A, the voyage

will appear to have taken n days, while to the traveller,

n-\-l days will appear to have elapsed—in other words, the

traveller will, apparently, have " gained a day."

But, as he goes eastward, he will find the local time con-

tinually getting faster, and he will have to move the hands

of his watch forward Ih. for every 15°, or 4m. for every 1°

of longitude. Thus, by the end of the voyage he will have

put his watch forward through 24h., and the day apparently

gained will be made up of the times apparently lost every

time the watch is put forward to local time.

Similarly, a traveller going round the world westward,

and starting and arriving back simultaneously with the first

traveller, will have made n—l revolutions relative to the Sun,

instead of n. Hence, the journey will appear to have taken

n—l days, and he will apparently have lost a day.

But, during the journey, he will have been continually

moving the hands of his watch backwards, so that the 24h.

apparently lost will be made up of the times apparently

gained each time the watch is put back to local time.
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Section II.

—

Dip of the Horizon.

100. Definitions.—Let be an observer situated above

the surface of tbe land or sea. Draw OT, OT' tangents to the

surface. Then it is evident, from the figure, that only those

portions of the Earth's surface will be visible whose distance

from the observer is less than the length of the tangents

OT, or,
z

Fig. 38.

The boundary of the portion of the Earth's surface visible

from any point is called the Offing or Visible Horizon.
Hence, if OA CB be the Earth's diameter through 0, and the
Earth be supposed spherical, the offing at is the small circle

TtT\ formed by the revolution of T about OB^ and having
for its pole the pointA vertically underneath 0. If, however,
the Earth be not supposed spherical, the form of the offing

will, in general, be more or less oval, instead of circular.

Conversely, since it is observed that the " offing " at sea is

very approximately circular, whatever be the position of

the observer, it may be inferred that the Earth is approxi-

mately spherical.

The iSip of the Horizon at is the inclination to the
horizontal plane of a tangent from to the Earth's surface.

Hence, if SOS' be drawn horizontally {i.e., perpendicular

to 00), the dip of the horizon will be the angle HOT.
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101. To determine the Distance and Dip of the
Visible Horizon at a given height above the Earth.

Let h = AO = given height of observer
;

a = CA = Earth's radius;

d = OT = required distance of horizon
;

D = Z HOT = required dip expressed in circular

measure
;

D" the number of seconds in the dip D.

(i.) By Euclid III. 36, OT' = OA . OB
;

.
•

. d^ =z h{2a-\-h) = 2ah-\- JiK

This determines d accurately. But in practical applications

h is always very small compared with 2a ; therefore h' may be

neglected in comparison with 2ah, and we have the approxi-

mate formula, d^ = 2ah .'. d = »J (2ah),
(ii.) Since CTO is a right angle,

.-. z OCT= complement of Z COT= z TOR= D.

Therefore, J) being expressed in circular measure, we havi

J.
_ arc AT

Fig. 39.

Now, in practical cases, where the dip is small, the drcAT
will not differ perceptibly in length from the straight line OT.

We may, therefore, take aic AT= d;

D = d _. ^/{2ah) _
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To reduce to seconds, we must multiply by 180 x 60 x OO/tt,

the number of seconds in a unit of circular measurement, and

we have

jy„ _ 180 X 60 X 60 /2h
V^ a

CoEOLLAEY 1.—Let «, h, d be measured in miles, and let

h' be the number of feet in the height h.

Then h' = 5280A, and taking the Earth's radius a as 3960

miles, we have
- /2x3960xA' I (37i\

^=V 6280 ==\\-^h
a very useful formula.

Corollary 2.—Since the offing is a circle whose radius is

very approximately equal to OT or d, we have

Area of Earth's surface visible from = vd^= iTtah = firA'

in square miles.

*102. Accurate Determination of Dip.—The use of approxi-

mations can be avoided by the exact formula :

tan I> = -^^ = \/(M±^ = /H2a + h
)^

GT a V a2

which is adapted to logarithmic computation.

In this, as in the preceding formulae, no account has been taken

of the effect of refraction due to the atmosphere.

For this reason it is important to determine dip of the horizon

by practical observations. An instrument called the Dip Sector is

constructed for this purpose.

Tables have also been constructed, giving the dip of the horizon

as seen from different heights. They are of great use at sea,

where the altitude of a star is usually found by observing its angular

distances from the oflfing.

103. Disappearance of a Ship at Sea.
—"When a ship

has passed the offing, the lower part will be the first to dis-

appear. Let A' 0' (Eig. 38) be the position of the ship ; let its

distance 00' be s, and let k = A'O' be the height above sea

level of the lowest portion just visible from 0. Ey the

approximate formula we have or= ^{2ah), 0'T= ^/(2ak)

.'. 8= y{2ah)-{-^{2ak).

This formula determines the distance s at which an object of

given height k disappears below the horizon.

A-STHON. G
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104. Effect of Dip on the Times of Rising and
Setting.—To an observer on land, the offing is generally

more or less broken by irregularities of the Earth's surface.

At sea, however, the offing is well defined, and if the dip of

the horizon in seconds be i>", the visible horizon, which
bounds the observer's view of the heavens, is represented on

the celestial sphere by a small circle parallel to the celestial

horizon, and at a distance B" below it {nJE's\ Fig. 40).

Hence the stars appear to rise and set when they are at an

angular distance jy below

the celestial horizon. Thus
they will rise sooner and set

later than they would if

there were no dip.

Talcing the observer's lati-

tude to be ?, let x\ x be the

positions of a star of decli-

nation (?, when rising across

the visible horizon nE'8 and

the celestial horizon nEs
respectively. Draw x' ^pei-pendicular to nEs, then x'B^ B"

.

Then, if the star rise t seconds earlier at x^ than at a;, we have

\bt—L xPx (in seconds of angle)

^ arc XX ^ arc^' ^g^^ ^^^^^ 17
)

sin xP cos d

But treating the small triangle xxE^& plane (Sph. Geom., 24),

and remembering that Z Pxx = 90°, we have

x'H _ B"
.

XX ^= —
COS nxP

'

B" sec d . sec nxP.

sin x'xIT

- ' = r.

Evidently the acceleration at rising = retardation at setting.

Corollary 1.—To an observer at the Equator, P
coincides with n, .'. L nxP = 0,

.-. the time of rising is accelerated by -^B" sec d seconds.

Corollary 2.—If the star is on the equator, d = 0,

X coincides with E, and Z nEP = nP = I,

.'. the acceleration = ^I>" sec I seconds.
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Section III.— Geodetic Measurements—Figure of the Ea/rth.

105. Geodesy is tlie science connected with the accurate

measurement of arcs on the surface of the Earth. Such
measurements may be performed with either of the two
following objects :

—

(i.) The construction of maps.

(ii.) The determination of the Earth's form and magnitude.

Only the second application falls within the scope of this book.

106. Alfred Russell Wallace's Method of Finding
the Earth's Radius.—An approximate measure of the

Earth's radius can be readily found by means of the following

simple experiment, due to Mr. A. II. Wallace.

Fig. 41.

Let Z, M, iV(Eig. 41) be the tops of three posts of the same
height set up in a line along the side of a straight canal.

Owing to the Earth's curvature the straight line XJfwill, if

produced, pass a little above N. Hence, in order to see Z, M
in a straight line, an observer at the post iVwill have to place

his eye at a point K, a little above iV, and the height KJS
may be measured. Let KL, KM he also measured.

Since the posts are of equal height, Z, M, JV will lie on a

circle concentric with, and almost coinciding with, the

Earth's surface. Let the vertical XiV meet this circle again

inw. By Euclid, in. 36,

KL.KM=KN.Kn', .-. Kn= KL.KMIKN,
and Kadius of Earth = \Kn (very approximately)

^ EL . KM
2KN '

This method cannot be relied on where accuracy is required,

for the small height KN is very difficult to measure, and a
very slight error in its measurement would affect the final

result considerably. Moreover the observations are consider-

ably affected by refraction.
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107. Ordinary metLods of Finding the Earth's
Radius.—Where greater accuracy is required, the radius of

the Earth is ohtained by measuring the length of an arc of

the meridian and determining the difference of latitude of its

extremities ; the radius may then be calculated as in § 90,

The instniments required for the observations include

—

(i.) Measuring rods, such as the double bar

;

(ii.) A theodolite, for measuring angles
;

(iii.) A zenith sector.

108. Measurement of a Base Line.—The first step is

to measure, with extreme accuracy, the length of the arc

joining two selected points, several miles apart, on a level

tract of country ; this line is called a Base Line. A series of

short upright posts are placed at equal distances apart along

the base line, and they are adjusted till their tops are seen

exactly in the same vertical plane, and are on the same level

as shown by a spirit level. Across these posts are laid

measuring rods of metal, whose length is very accurately

known, and these are also adjusted in a line, and made level

by the spirit level. These rods are not allowed to touch,

but the small distances between their ends are measured with
] cading microscopes. In thi^ way, a base line several miles

long can be measured correctly to within a small fraction

of an inch
*109. The DouWe Bar.—

J^ /
If the measuring rods be made ,1

of a single metal, their length '/ 1« ?».««^ .,, ,\ .

" ct Itt Iron-
will vary with the tempera- /-[ i

ture. This disadvantage is, q'i \r Brass\

however, sometimes obviated

by the use of the double bar ^ .„

(Fig 42).
-tiG. 4^.

It consists of two bars, ah, cd, one of iron, the other of brass.

These are joined together in the middle, and to their ends are

hinged perpendicular pointers eac, fbd of such length that

ea : ec = fb : fd
= coeflBcient of linear expansion of iron : that of brass,

= about 11 : 18.t

If the temperature be raised, the rods will expand, say to a'h',

c'd'. But aa' : cc' = ea : ec, therefore e, and similarly /, will remain

fixed. Hence the distance ef will be unaffected by the changes of

temperature.

t Wallace Stewart's Heat, Table 22.
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110. Triangulation.—When once a "base line has been
measured, tlie distance between any two points on the Earth

can be determined by the measurement of angles alone. For,

calling the base line AB, let C be any object visible from

both A and £. If the angles CAB, CBA
_^

be observed, we can solve the triangle ^^.'^''

ABC and determine the lengths of the ,--'"'

sides CA, CB. Either of these sides, say ^N^
CA, may now be taken as the base of a new 1

'"-,

triangle, whose vertex is another point, B.
\

Thus, by observing the angles of the tri-
\

angle ACB we can determine DA, BC in 1

terms of the known length of AC. Pro-
;

ceeding in this way, we may divide any • y
country into a network of triangles connect- dIc^^

ing different places of observation A,B,C, B, \
""

-^^^

and the distance between any two of the \^ ,S'\

places calculated, as well as the direction of A\. /
the line joining them. Finally, two stations ^'

C, S are taken, which lie on the same meri- „
dian, and the distance CS is calculated ; in ' *

this way it is possible to measure an arc of the meridian.

111. The Theodolite.—The measurement of the angles

is far easier in practice than the measurement of a base line.

The instrument used for measuring angles is called a Theo-
dolite, and is really a portable form of altazimuth. It is

provided with spirit-levels, by means of which the instrument

can be adjusted so that the horizontal circle is truly horizon-

tal, and the vertical axis, therefore, truly vertical ; the

direction of the north point is usually found by means of a

compass needle. Most theodolites are only furnished with a

small arc of the vertical circle, sufficient for measuring the

altitude of one terrestrial object as seen from another.

By reading the horizontal circle of the theodolite, the azimuths
of B, G, as seen from A, are found. By using the difference of

azimuth instead of the angle ABG, it becomes unnecessary to take
account of the height of the various stations above the Earth. For
if A, B, G are replaced by any other points, A', B\ G', at the sea
level, and vertically above or below A, B, 0, the vertical planes
joining them will be unaltered in position, and therefore the
azimuths will also be unaffected.
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112. Having thus found, with great accuracy, the length

of the arc joining two stations on the same meridian, it only

remains now to observe their difference of latitude.

The Zenitli Sector is the most useful instrument for

this purpose. It consists essentially of a long telescope ST
(Fig. 44), mounted so as to turn about a horizontal axis, A,
near its object-glass ; this axis is adjusted to

point due east and west (as in the transit

circle). Attached to the lower end near the

eye piece is a graduated arc of a circle GIT,

whose centre is at A. The line of collimation

of the telescope is indicated by cross-wires

placed in the field of view. A fine plumb-
line, AP, is attached to the axis A, and hangs
freely in front of the graduated arc. The
plumb-line should mark zero when the line of

collimation points to the zenith. When the

instrument is pointed to any star, the reading

opposite the plumb-line will be the star's zenith distance

This reading can be determined with gi-eat accuracy by
means of a reading microscope.

Fig. 44.

113. A star is selected which transits near the zenith*

and its meridian zenith distances are observed at the two
stations. Let these be z and z degrees. Then if /, and l^

are the latitudes of the stations, and d the declination,

we have, by § 24,

I'—l = (d—z') — (d— z) = z-z'.

Hence, if s is the measured length of the arc of the meri-

dian joining the stations, and r the radius of the Earth, § 91

gives

. — l^ _!_ — i?5 i_
TT /' / TT Z Z'

whence the Earth's radius is found.

* This position is chosen because the effects of atmospheric

refraction are least in the neighbourhood of the zenith.
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114. Exact Pignre of the Earth.—If the Earth were
an exact sphere, the same value would be found for the

radius r in whatever latitude the observations were made.
But in reality the length of a degree of latitude, and therefore

also r, is found to be larger when the observation is made near

the poles than when made near the equator, and hence it is

inferred that the meridian curve is somewhat oval.

Let PQP'R represent the meridian curve, 00' two near

places of observation on it. Then, if OZ'and OK be drawn
normal (i.e., perpendicular) to the Earth's surface at 0, 0',

they will be the directions of the plumb lines of the zenith

sectors at 0, 0'. Hence the observed difference of latitudes

or meridian altitudes at 0, 0' will give the angle OKO'

.

Regarding the small arc 00' as an arc of a circle whose
centre is K, we shall have approximately.

Circular measure of OKO' = arc 00' -^ OK,

0K= arc 00'

circ. measure of OKO'
180 8

IT I'-V

and hence r, calculated as in § 113, is the length OK.
The length OK is called the

radius of curvature of the arc,

and K is called the centre of
curvature ; they are respec-

tively the radius and centre of

the circle whose form most nearly

coincides with the meridian along

the arc 00'.

This radius of curvature OK
is not, in general, equal to 00,
the distance from the centre of

the Earth, owing to the Earth
not being (j^uite spherical.

As the result of numerous observations, the meridian curve

is found to be an ellipse (see Appendix), whose greatest

and least diameters, called the major and minor axes, are

the Earth's equatorial and polar diameters respectively. The
Earth's surface is the figure formed by making tlie ellipse

revolve about its minor axis POP' . TMs figure is called an

oblate spheroid.
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115. To find the Equatorial and Polar Radii of Cnr-
vature of the meridian curve, supposing it to be an
ellipse.—Let FQF'R be tlie ellipse. Let 2a, 2b be the
lengths of its equatorial and polar diameters QCH, PCP'.
Let r^, r, be the required radii of curvature at Q and F
respectively.

Take any point on the ellipse,

and let the normal at meet the

two axes in G and g respectively.

It is proved in treatises on

Conic Sections* that

OG: Og=: CF-" : CQ^ = h' : a\

Pirst take very near to Q.

Then OG will become equal to

the radius of curvature r^ ; also

Og will evidently become ulti-

mately equal to CQ or a.

Therefore, r^ : a = b^ : a^]

Next take very near to F.

to 5 and Og to r^.

Therefore, b : r^ = b^ : a^-, .', r^^a^jl.

Thus rj, ^2 are found in terms of a, b.

Conversely, if r^ and r^ are known, a and b may be found
;

for, by solving, we find a = l/ir^r^, b — ^/(^iVa).

We notice that since a > h, .*. r^ < r^.

That the equatorial radius of curvature is less than the

polar is also evident from the shape of the curve. This, as the

figure shows, is most rounded at Q, R, and flattest or least

rounded at P, F' . Hence it will require a smaller circle to

fit the shape of the curve at the equator than at the poles.

116, Exact Dimensions of the Earth.—The lengths of

the Earth's equatorial and polar semi-diameters, a, b, are

a = 3963-296 miles, b = 3W9-791 miles.

Thus, the Earth's equatorial semi-diameter exceeds its

polar semi-diameter by 13*505 miles.

Then OG will become equal

* Appendix, Ellipse (9).
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The mean radius of an oblate spheroid is the radius of a

sphere of equal volume, and is equal to \/{a^h). Thus, the

Earth's mean radius is approximately 3958*8 miles.

The ellipticity or compression {e) is the fiaction

For the Earth, c = -—
- nearly.

z9o

The eccentricity {e) is given by the relation

Hence W = a^ (1 -^') = a" {\-cJ ;

.«. 1-^2 ^ (l_c)2 = l_2c+ c«;

Since c is small, 2— c = 2, approx. ; .*. ^— 2c, approx.,
which gives the Earth's eccentricity e = -0826.

117, Geographical and Geocentric Latitude.

—

The
Geographical Latitude of a place is the angle which the

normal to the Earth's surface at that place makes with the
plane of the equator. It is thp latitude defined in § 18,

Thus, lQOO (Fig. 46) is the geographical latitude of 0.

The Geocentric Latitude is the angle subtended at the
Earth's centre by the arc of the terrestrial meridian between
the place and the equator. Thus, Z QCO is the geocentric
latitude of 0.

*118. Relations between the Geocentric and Geogfraphical
Latitudes.—Let Z Q(?0 = Z, Z ClGO = V. Draw 0^ perp. to Cq.

Then GN:GN=OG:Og = h^ : a^; .'. NO/CN = (NO/GIT) x (hya")
;

.-. tan I' = tan « X h^fa^ = (1- e^) tan I.

We deduce also tan (l-V) = „
/^ ^'^ ^^, = ie'-'sin 21 (approx.),

2 (1 — e^sin'^Z)

since e^ is small.
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EXAMPLES.—III.

1. Show that the locus of points on the Earth's surface at which
the Sun rises at the same instant is half a great circle ; and state

the corresponding property possessed by the other half.

2. Find the least height of a mountain in Corsica in order that it

may be visible from the sea-level at Mentone, at a distance of 80
miles.

3. At the equator, in longitude L°, a given vertical plane declines

a° from the north towards the west ; find the latitude and longitude
of the places to whose horizon the given plane is parallel.

4. Prove that, at either equinox, in latitude I, a mountain whose
height is Ijn of th^ Earth's radius will catch the Sun's rays in the

12 /"2
morning . . /— hours before he rises on the plain at the base.

_12_ /_2

TT cosiV/ n

5. Estimate to the nearest minute the value of this expression for

a mountain three miles high in latitude 45°.

6. Find the distance of the horizon as seen from the top of a hill

1056 feet high.

7. Find, to the nearest mile, the radius of the Earth, supposing the

visual line of a telescope from the top of one post to the top of

another post two miles oil, cuts a post, half way between, 8 inches

below the top, the posts standing at equal heights above the water
in a canal.

8. In Question 7, what would be the length of a nautical mile,

adopting the usual definition.

9. Supposing the Earth spherical, and of radius r, and neglecting

the refraction of the air, show that, if from the top of a mountain
of height a above the level of the sea, the summit of another
mountain is seen beyond the horizon of the sea, and at an elevation

e above the horizon, and if its distance be known to be D, its height is

approximately given by

--(l-Vr)-
10. A railway train is moving north-east at 40 miles an hour in

latitude 60°; find approximately, in numbers, the rate at which it ia

changing its longitude.
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MISCELLANEOUS QUESTIONS.

1. Explain the different systems of coordinates by which a star's

position is fixed in the heavens.

2. Show, by a figure, where a star will be found at 9 p.m. on the

5th of June in latitude 50°N., if the star's right ascension is 12 hours

and its declination 5° south.

3. Define dip, azimuth, culmination, circumpolar, zenith. Why
would it be insufficient to define the declination of a star as its

distance from the equator measured along a declination circle ?

4. Three stars, A, B, C, are on the same meridian at noon, B being
on the equator, and A and G equidistant from B on either side.

Prove that the intervals between the setting-times of A and B and
B and G are equal.

5. Show how to find approximately the Sun's R.A. at a given
date. Obtain its approximate value for March 1, August 10,

October 23, and January 15.

6. Describe the transit circle.

7. Define a morning and evening star. Show that on the 1st of

September a star, whose declination is 0°, and R.A. llh. 28m., is an
evening star, but that it is a morning star three weeks later.

8. Assuming the Earth to be a sphere, show how its radius may
be pi'actically measured.

9. Explain clearly the nature and uses of the zenith sector.

10. A, B, G are the tops of the masts of three ships in a line, and
are at equal heights above the sea-level, and O is the centre of the
Earth. If the distance BG be x miles, and r is the Earth's radius
in miles, show that Z BAG = \ I BOG ; and hence deduce that

, B^C= ISO '«"<fi"iL second..
IT 2r

Find this angle, having given x = 2, r = 3960, v = S}.
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EXAMIU^ATION PAPEE.—III.

1. Assuming the Earth to be a sphere, show that, as we travel from

the equator due north, our astronomical latitude {i.e., the altitude of

the Pole) will increase. Taking this increase as 1° for every

69 miles, find the circumference and the radius of the Earth.

2. Define the metre, the nautical mile, and the hnot, and calculate

their values in feet and feet per second respectively, taking the

Earth's radius as 3960 miles.

3. How is the speed of a ship estimated ? Find, in feet, the dis-

tance apart of the knots on a log line, so constructed that the

number run out in half a minute measures the ship's velocity in

nautical miles per hour.

4. What are the difficulties in measuring an arc of the meridian

and how are they met ?

5. Find the Earth's radius in fathoms, and in metres. Express

the nautical mile in French units of length.

6. Obtain formulse for the distance of the visible horizon from a

place whose height is given. Deduce that, if the height h be

measured in inches, the distance in miles will be* /—-, taking the

Earth's radius as 3960 miles.

7. Define the dip of the horizon, and show how to find it. Prove

that the number of seconds in the dip is nearly 52 times the

distance in miles of the offing.

8. If A, B, and C be the tops of three equal posts arranged in

order two miles apart along a straight canal, show that the straight

line AB passes 5 feet 4 inches above G, and that AG passes 2 feet

8 inches below B.

9. Find the length of a given parallel of latitude intercepted

between two given circles of longitude.

10. Is the Earth an exact sphere ? Show that a degree of latitude

increases in length as we go northward. Distinguish a nautical

from a geographical mile.



CHAPTEE IV.

THE SUN'S APPARENT MOTION IN THE ECLIPTIC.

Section" I,

—

The Seasons.

119. In Section III. of Chapter I.* we described the Sun's

annual motion among the stars, and showed how. in con-

sequence of this motion, the Sun's right ascension increases

at an average rate of nearly 1° per day, while his declination

fluctuates between the values 23° 21\' north, and 23° 27^'

south of the equator. "We shall now show how tliis annual
motion, combined with the diurnal rotation about the poles,

gives rise to the variations, both in the relative lengths of day
and night, and in the Sun's meridian altitude, during the

course of the year ; how these variations are modified by the

observer's position on the Earth ; and how they produce the

phenomena of summer and winter.

Although both the diurnal and annual apparent motions of

the Sun are known to be really due to the Earth's motion, it

will be convenient in this section to imagine the Earth to be
fixed, while the Sun and stars are moving ; thus the zenith,

pole, horizon, meridian, and equator will be considered fixed,

as they actually appear to be to an observer on the Earth,

As the change in the Sun's declination during a single day
is very small, the Sun's apparent path in the heavens from
morning till night is very approximately a small circle parallel

to the equator, and may be regarded as such for purposes of

explanation. The effects of the variation in the declination

will, however, become very apparent when we compare the
Sun's diurnal paths at different seasons of the year.

Throughout this section we shall denote the obliquity of

the ecliptic by i, the Sun's declination at any time by d, his

zenith distance at noon by z, and the observer's latitude by I.

* The student will do well to revise Chapter I., Section III.,

before proceeding further.
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120. Zones of the Earth.—Definitions.—From § 24
it is evident that if the Sun passes through the zenith at

noon, d must = I.

But d lies bet^Yeen i (north) and i (south).

Therefore I must lie between the limits i ^. and i S.

Thus, if the Sun he vertically overhead at some time in the

year, the latitude must not be greater than 23° 27|' N. or S.

Again, from § 28 we see that the Sun, like a circumpolar
star, will remain above the horizon during the whole of its

revolution provided that 9^^—d< I.

This requires that ^ > 90° - «.

Thus, if the Sun be visible all day long during a certain

period of the year, the latitude must be greater than 66° 32^'

N. or S.

These circumstances have led to the following definitions.

The Tropics are the two parallels to the Earth's equator
in north and south latitude «, or 23° 27|-'. The northern
tropic is called the Tropic of Cancer, the southern the

Tropic of Capricorn.
The Arctic and Antarctic Circles are respectively the

parallels of north and south kititude 90°— ?', or GG° 32|'.

These four parallels divide the Earth's surface into five

regions or zones.
The portion between the tropics is called the Torrid Zone.

The portion between the tropic of Cancer and the arctic

circle is called the North Temperate Zone. The portion

between the tropic of Capricorn and the antarctic circle is

called the South Temperate Zone.
The portions north of the arctic circle, and south of the

antarctic circle are called the Frigid Zones, and are distin-

guished as the Arctic and Antarctic Zones.

121. Sun's Diurnal Path at Different Seasons and
Places.—^We sliall now describe the various appearances
presented by the Sun's diurnal motion at different times of

the year, beginning in each case with the vernal equinox.

We shall first suppose the observer at the Earth's equator,

and shall then describe how the phenomena are modified as

he travels northward towards the pole.
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122. At the Earth's equator, 1 = 0, and the poles of

of the celestial sphere are on the horizon (P, F', Fig. 47).

Hence, hetween sunrise and sunset, the Sun has always to

revolve about the poles through an angle 180', and the days

and nights are always equal, each being 12 hours long.

On March 21 the Sun is on the celestial equator, and it

describes the circle EZJV, rising at the east point, passing

through the zenith at noon, and setting at the west point.

Between March 21 and Sept. 23, the Sun is north of

the celestial equator; it therefore rises north of E., transits

north of the zenith Z, and sets north of W. Its N. meridian

zenith distance z is always equal to its N. declination d

(since by § 24, z = <? — ? and ? = 0)

.

Hence, from March 21 to June 21, z increases from to

* N". On June 21, z has its greatest N. value «', and the

Sun describes the circle E'Q'W, where ZQ = L

Erom June 21 to Sept. 23, z decreases from i to 0.

On Sept. 23, the Sun again describes the great circle JE'Q i^.

Between Sept. 23 and March 21, the Sun is south of the

equator, and therefore it transits south of the zenith. "We
now have % = d, both being S.

From Sept. 23 to Dec. 22, the Sun's south Z.D. at noon,

z, increases from to i.

On Dec. 22, z has its greatest value i (south) and the Sun
describes the circle E 'Q"W" where ZQ' = i.

From Dec. 22 to March 21, z diminishes again from i to 0.

On March 21, the Sun again describes the circle EQW, and
the same cycle of changes is repeated the following year.
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123. In the Torrid Zone North of the Equator.
On March 21, the Sun describes the equator SJQW (Yig.

48), rising at ^and setting at JF. Here Z ZFJS — aZPW
— 90°, and the day and night are each 12h. long. The
Sun transits S. of the zenith at Q, where ZQ = % =1,
From March 21 to June 21, ^ increases from to i, and

the Sun's diurnal path changes from UQJF to E'QW.
The hour angles at rising and setting increase from ZPE

and ZPW to ZPE' and ZPW\ respectively ; hence the days

increase and the nights decrease in length. The day is

longest on June 21, when the hour angle ZPE' is greatest.

The increase in the day is proportional to the angle EPE'

^

and is greater the greater the latitude I.

At first the Sun transits S. of the zenith, and %^=.l—d.
"When (? = Z, z= 0, and the Sun is directly overhead at noon.

After this, the Sun transits iN". of the zenith, and z = d— I.

On June 21, z attains its maximum N, value ZQ' = i—l.
From June 21 to Sept. 23, the phenomena occur in the

reverse order. The diurnal path changes gradually hack to

EQ W. The day diminishes to 12h. The Sun, which at first

continues to transit N, of the zenith, becomes once more ver-

tical at noon when d again = I, and then transits S. of the

zenith.

Prom Sept. 23 to Dec. 22, the Sun's path changes from
EQW to E"Q'W".
The eastern hour angle at sunrise decreases to ZPE"; thus

the days shorten and the nights lengthen. The day is

shortest on Dec. 22.

Also z increases from I to l-\-i.

On Dec. 22, z attains the maximum value ZQ' = l+i, and
the Sun is then furthest from the zenith at noon.

From Dec. 22 to March 21, the length of the day increases

again to 12 hours, and the Sun's meridian zenith distance

decreases to z = Z.

124. On the Tropic of Cancer, ? = «'. — The variations

in the lengths of day and night partake of the same general

character as in tbe Torrid Zone, But the Sun only just

reaches the zenith at noon once a year, namely, on the longest

day, June 21. At otber times the Sun is south of the zenith
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, QZQ

Fig. 49.

125. In the North Temperate Zone I > » but < 90°— «.

Here the yariations in the lengths of day and night are

similar, but more marked, owing to the greater latitude.

On March 21, the Sun describes the equator JEQWH (Fig.

49), whichis bisected bythe horizon; hencetheday is 12h.long.

The length of the day increases from March 21 to June 21.

The day is longest on June 21, when the Sun describes

E'QW'R\ and the hour angles ZPE\ ZPW are greatest.

The days diminish to 12h. on Sept. 23, when the Sun again
describes UQ WR. The day is shortest on Dec. 22, when the
Sun describes E"Q!'W"B!'.
From Dec. 22 to March 21, the days increase in length, and

on March 21 the day is again 12 hours long.

The difference between the longest and shortest days is the
time taken by the Sun to describe the angles E'PE", W"PW\
and is therefore

= tV (

^

e'pp:"+ z w'pw) = ^.z e'pe".
It will be seen that Z E'PE" is greater in Pig. 49 than in

Fig. 48, thus the variations are more marked in the tem-
perate zone than in the torrid zone. The variations increase
as the latitude increases.

The Sun never reaches the zenith in the temperate zone,
but always transits south of the zenith. The Sun's zenith
distance at noon is least on June 21, when % = ZQ' =^ l—i,
and is greatest on Dec. 22, when % = ZQ' = l+i. At the
equinoxes (March 21 and Sept. 23), % = ZQ = I.

ASTEON. H
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126. On the Arctic Circle, I = 90°— «. Hence on June

21, Tvhen the Sun's :N'.P.I). = 90°-«, the Sun at midnight

will only just graze the horizon at the north point without

actually setting. On Dec. 22 at noon, the Sun's Z.D. = 90°,

and the Sun will just graze the horizon without actually

rising. As in the preceding case, the days increase from Dec. 22

to June 21, and decrease from June 21 to Dec. 22; on

March. 21 and Sept. 23, the day and night are each 12h. long.

127. In the Arctic Zone we have Z>90°— «, and the

variations are somewhat different (Fig. 50).

On March 21, the Sun describes the circle UQJF, and the

day is 12h. long.

As d increases, the days increase and the nights decrease,

and this continues until d= 90°— I. When this happens,

the Sun at midnight only grazes the horizon at n.

Subsequently, while ^>90°— ?, the Sun remains above

the horizon during the whole of the day, circling about the

pole like a circumpolar star. This period is called the Per-
petual Day.

During the pei-petual day, the Sun's path continues to rise

higher in the heavens every twenty-four hours ur»til June 21,

when the Sun traces out the circle H' Q'. The Sun's least and
greatest zenith distances will then be ZQ' = l~ i , and
ZE' = 180°—«—/ respectively.

After June 21, the Sun's path will sink lower and lower.

When d is again =90°— ? the perpetual day will end.

Subsequently, the Sun will be below the horizon during

part of each day. The days will then gradually shorten and
the nights lengthen.

On Sept. 23, the Sun will again describe the circle EQW^
and the day and night will each be 12 hours long.

The days will continue to diminish till the Sun's south

declination d' = 90° — I. When this happens the Sun at noon
will only just graze the horizon at s.

While d' '>90°— l, the Sun remains continually below the

horizon. This period is called the Perpetual Night.
On Dec. 22 the Sun traces out the circle Jl"Q" below the

horizon.

When d' is again = 90° — /, the perpetual night will end.

Subsequently, the day will gradually lengthen until

March 21, when it will again bo 12 hours long.
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Fig. 50.
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128. At the North Pole (Fig. 51) the phenomena are

mucli simpler. The celestial equator coincides with the

horizon. Hence, from March 21 to Sept. 23, the Sun will

be above the horizon, and there will be perpetual day. The
Sun's altitude will attain its greatest value i on June 21,

when the Sun will trace out the circle QR'.
From Sept. 23 to March 21 there will be perpetual night.

The Sun will be at its greatest depth below the horizon

on Dec. 22, when it will trace out the circle Q'R".

129. Phenomena in the Southern Hemispnere.—
At a place south of the equator, the variations will partake

of the same general character as those in the correspondijig

north latitude, but the seasons will be reversed. The south
pole will be above the horizon, instead of the north pole, and
the days will increase in length as the Sun passes to the south
of the equator. In fact, if we consider two antipodal points

or places at opposite ends of a diameter of the Earth, the day
at one place will coincide with the night at the other.

Hence, at anyplace between the equator and antarctic circle,

Dec. 22 will be the longest day, and June 21 the shortest.

"Within the antarctic circle there will be perpetual day for

a certain period before and after Dec. 22, and perpetual night
for a certain period before and after June 21.
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The variations in the Sun's north zenith distance at noon

will he the same as the variations in the south zenith distance

in the corresponding north latitude six months earlier.*

1 30. The Seasons. —Having thus described the variations

in the Sun's daily path at different times and places, we shall

now show how these variations account for the alternations

of heat and cold on the Earth.

Astronomically, the four seasons are defined as the portions

into which the year is divided by the equinoxes and the

solstices. Thus, in northern latitudes,

Spring commences at the Vernal Equinox (March 21),

Summer ,, ,, Summer Solstice (June 21),

Autumn ,, ,, Autumnal Equinox (Sept. 23),

Winter ,, ,, Winter Solstice (Dec. 22).

It is obvious that the temperature at any place will depend

in a great measure upon the length of the day. While the

Sun is above the horizon, the Earth is receiving a considerable

portion of the heat of his rays, the remaining portion being

absorbed by the Earth's atmosphere through which the rays

have to pass. Wlicn the Sun is below the horizon, the

Earth's heat is radiating away into space, although the heated

atmosphere retards this radiation to a considerable extent.

Thus, on the whole, the Earth is most heated when the days

are longest, and conversely.

The variations in the Sun's meridian altitude have a still

greater influence on the temperature. When tie Sun's rays

strike the surface of the Earth nearly perpendicularly, the

same pencil of rays will be spread over a smaller portion of the

surface than when the rays strike the surface at a considerable

angle ; hence the quantity of heat received on a square foot

of the surface will be greatest when the Sun is most nearly

vertical. By this mode of reasoning it is shown in Wallace

Stewart's Text-Book of Light, § 1^, that the intensity oi

illumination of a surface is proportional to the cosine of the

angle of incidence, and the same argument holds good with

* The student will fitid it instructive to trace out fully the varia-

tions in S. latitudes corresponding to those described in §§ 122-128.

See diagram, p. 421.
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regard to radiant heat as well as light. Hence the Sun's heat-

ing power when above the horizon is always proportional to

the cosine of the Sun's zenith distance or the sine of its altitude.

In this proof, however, the absoi-ption of heat by the

Earth's atmosphere has been neglected. But when the

Sun's rays reach the Earth obliquely, they will have to pass

through a greater extent of. the Earth's atmosphere, and
will, therefore, lose more heat than when they are nearly

vertical. This cause will still further increase the effect of

variations in the Sun's altitude in producing variations in the

temperature.

131. Between the Tropics the combination of the two
causes above described tends to produce high temperatures,

subject only to small variations during the year. The Sun's

meridian altitude is alwaysvery great, and the variations in the

lengths of day and night are small. If the latitude be north, the

Sun's heating power is greatest while the Sun transits north

of the zenith. During this period the Sun's meridian

altitude is least when the days are longest. Thus the effects

of the two causes in producing variations in the Sun's heat

counteract one another, to a certain extent, and give rise to

a period of nearly uniform but intense heat.

In the Worth Temperate Zone, the Sun is highest at

noon when the days are longest, and therefore both causes

combine to make the spring and summer seasons warmer
than autumn and winter. But the highest average tempera-

tures occur some time after the summer solstice, and the

lowest temperatures occur after the winter solstice ; for

the Earth is gaining heat most rapidly about the summer
solstice, and it continues to gain heat, but less rapidly, for

some time afterwards. Similarly, the Earth is losing heat
most rapidly at the winter solstice, and it continues to lose

heat, but less rapidly, for some time afterwards. Eor this

reason, summer is warmer than spring, and winter is colder

than autumn.
As we go northwards, the Sun's altitude at noon becomes

generally lower throughout the year, and the climate therefore

becomes colder. At the same time, the variations in the length
of the day become more marked, causing a greater fluctua-

tion of temperature between summer and winter.
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Within tlie Arctic Circle there is a -vrarm period during
the perpetual day, but the Sun's altitude is never sufficiently

great to cause very intense heat. During the pci-pctual night
the cold is extreme ; and the low altitude of the Sun, when
above the horizon at intermediate times, gives rise to a very
low average temperature during the year.

In the Southern Hemisphere the seasons are reversed

;

for, in south latitude /, when the Sun's south declination is d,

the same amount of heat will be received from the Sun as in

north latitude I, when his north declination is d. Hence, the
seasons corresponding to our spring, summer, autUmn and
winter will begin respectively on September 23, December 22,

March 21, and June 21, and will be separated from the corre-

sponding seasons in north latitude by six months.

132. Other Causes affecting the Seasons and
Climate.—It is found (as will be explained in the next
seetlcn) that the Sun's distance fi'om the Earth is not quite

constant during the year. The Sun is nearest the Earth
about December 31, and furthest away on July 1 (these are

the dates of perigee and apogee respectively). As shown in

Wallace Stewart's Text-Booh oj Light
^ § 9, the intensity of

illumination, and therefore also of heating, due to the Sun's
rays, varies Inversely as the square of the Sun's distance.

Hence the Earth receives, on the whole, more heat from the
Sun after the winter solstice than after the summer solstice.

This cause tends to make the winter milder and the summer
cooler in the northern hemisphere, and to make the summer
liotter, and the winter colder in the southern hemisphere.

The variations in the Sun's distance are, however, small,

and their effect on the seasons is more than counter-

acted by purely terrestrial causes arising from the unequal
distribution of land and water on the Earth. The sea has a
much greater capacity for heat than the rocks forming the
land ; it is not so readily heated or cooled. In the southern
hemisphere the sea greatly preponderates, the largest land-
surfaces being in the northern hemisphere. Hence, the
climate of the southern hemisphere is generally more equable,
and the seasons are not so marked as In the northern hemi-
sphere, quite in contradiction to what we should expect from
the astronomical causes.
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133. Times of Sunrise and Sunset.—The times of

sunrise and sunset at Greenwich are given for every day

of the year in Whitaher^s and other almanacks. For any

other latitude, the Sun's declination must be found from the

almanack, the times of sunrise and sunset can then be found

by means of tables of double entry constructed for the pur-

pose (§ 29). These are called " Tables of Semidiurnal

and Seminocturnal Arcs," They give, for different latitudes

and declinations, the interval between apparent noon
and sunset, i.e., the apparent time of sunset, or half the

length of the day. Subtracting this from 12 hours, the

apparent time of sunrise is found, and is half the length

of the night.

If, as in § 129, we consider two antipodal places A
and B, the planes of their horizons will be parallel, and the

Sun will be above the horizon at A when he is below the

horizon at B, and vice versa. Hence, the apparent time of

sunrise (measured from noon) in ^N". latitude I will be the

apparent time of sunset (measured from midnight) in S.

latitude I on the same date.

For this reason the tables are usually constructed only for

N. latitudes. For S. latitudes they give the time of sunrise

instead of sunset.

The times found in this manner will be the local solar times.

To reduce to Greenwich solar time we must add or sub-

tract 4m. for each degree of longitude, according as the place

is W. or E. of Greenwich.

134. To find the length of the perpetual day and
night at places within the Arctic or Antarctic
Circles.

The perpetual day lasts while the Sun's declination at local
midnight is greater than the colatitude (or complement of the
latitude), during spring and summer. The perpetual night
lasts while the Sun's S. deck at local noon is greater than the
colat. during autumn and winter. The Sun's deck at Green-
wich noon being given for every day of the year, in the
Nautical Almanack, it is easy to find, to within a day,
the durations of the perpetual day and night in any given
latitude greater than 66° 32^'.
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135. To find the time the Sun takes to rise or
set.—Let -D" be tlie Sun's angular diameter, measured in

seconds. "When tlie Sun begins to rise, bis upper limb just

touches tbe horizon, and his centre is at a depth ^B" below
the horizon. When the Sun has just finished rising, his

lower limb touches the horizon, and his centre is at an altitude

^D" above the horizon. During the sunrise, the centre rises

through a vertical height D". The problem is closely similar

to that of § 104, where the effect of dip is considered. Hence
if t seconds be the time taken in rising, d the declination of

the Sun's centre, and x the inclination to the vertical of the

Sun's path at rising {JSx'x or nxP, Fig. 40) we have
t = i\ D" sec d sec x,

= 4 sec ^ sec iT X (0's angular diameter in minutes).

As in § 104, this gives, for a place on the equator,

t = -^D" sec d,

and at an equinox in latitude I,

t = ^5 D" sec I

Example.—At an equinox in latitude 60°, the 0*8 angular

diameter being 32',

the time taken to rise will be = 4 x 32 x sec 60° seconds
= 256s. = 4m. 16s.

136. Note.—It may be mentioned that, owing to atmos-

pheric refraction, the Sun really appears to rise earlier and

set later than the times calculated by theory. As the pheno-

mena of refraction will be discussed more fully in Chapter

VT., it will be sufficient to mention here that the rays of light

from the Sun are bent to such an extent by the Earth's

atmosphere that the whole of the Sun's disc is visible when it

would just be entirely below the horizon if there were no
atmosphere.

Moreover, there is daylight, or rather twilight, for some

time after the Sun has vanished, so that what is commonly
called night does not begin for some time after sunset.

For the same reasons, the perpetual day at a place in the

arctic circle is lengthened, and the perpetual night short/med,

by several days.

The time taken in rising and setting is, however, prac-

tically unaffected.



TIIE STJN's APPAEEXT MOTION IN THE ECLIPTIC. 99

Section II.— The Ecliptic.

137. The First Point of Aries.—In determining the

right ascensions of stars, the first step must necessarily be
to find accurately the position of the first point of Aries, since

this point is taken as the origin from which R.A. is measured.

In other words, we must first find the E.A. of one star.

When this is known we can use that star as a " clock star,"

to determine the sidereal time and clock error ; and, these

being known, we can then find the R.A. of any other star, as

explained in Chapter II. But until the position of T has
been found, the methods of Chapter II. will only enable us
to find the difference of E.A. of two stars by observing the

difference of their times of transit, as indicated by the astro-

nomical clock, and will determine neither the sidereal time
nor the clock error, nor the R.A.'s of the stars.

.
138, First Method.—The position of T maybe found

thus :—At the vernal equinox the Sun's declination changes
from south to north, or from negative to positive. Let the
Sun's declination be observed by the Transit Circle at the pre-

ceding and following noons, and let the observed values be
— di&nd 4- <?2 («'.<?.,

<?x
S., and^^jN".). Jjet t^, t^ he the corre-

sponding times of transit of the Sun's centre, as obsen^ed by
the astronomical clock, and let T, the time of transit of any
star, be also observed. Then,

T—t^ = difference of R.A. of star and Sun at first noon,

T—t^ = ,, ,, ,, at second noon.

Let T—f^ = tty and T—t^ = a^. We have

Increase in Sun's decl. in the day= d.2— (— c?^) = <?2+ ^i>

,, ,,
R.A. ,, = Tg — S| = <?! a.^,

and both coordinates increase at an approximately uniform
rate during the day.

Therefore the 0's decl. will have increased from —d^toO
in a time dJ[dy-{-d^ of a day, and the corresponding increase
in R.A. will be

{a^-a^) X d,l{d, + d,).

The Sun is now at T, .*. 0's R.A. is now = 0. Hence,

The star's R.A. = ^^-fez^i^ aA+ ^A
^

d^ + d.^ f/j -f d.^
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*139. Plamsteed's Method for finding the First
Point of Aries.—The principle of the method now to be
described is as follows :—Let S^, S be two positions of the
Sun shortly after the vernal and before the autumnal equinox
respectively, and such that the declinations S^3I^ and SM are

equal. Then the right-angled triangles tM^S^ and :DzMS
will be equal in all respects, and we shall therefore have

Fig. 52.

At noon, some day shortly after March 21, the Sun is-

observed with the Transit Circle, say when at S-^. We thus
determine its meridian zenith distance z^\ and also the dif-

ference between the times of transit of the Sun and some fixed

star X, whose E.A. is required. This difference, which is the
difference of E.A. of the Sun and star, we shall call a^. If

d^ be the Sun's declination, and I the observer's latitude, we
shall have

SJI^ = d, = l-z„ 3f,]V= a,.

TVe now have to determine JfiV, the difference of 11. A. of the

Sun and star shortly before September 23, when the Sun'?

declination SMis again equal to rf^. But the Sun can only

be observed with the Transit Circle at noon, and it is highly

improbable that the Sun's declination will again be exactly

equal to d^ at noon on any day. AVe shall, however, find two
consecutive days in September on which the declinations at

noon, S.JI.2 and S-^M^, are respectively greater and less than d^.



THE sun's apparent MOTION IN THE ECLIPTIC. 101

Let 22 and z^ he the observed meridian zenith distances at

S^ and S^
; 4 ^^^ ^s ^^^ corresponding declinations S-^M.,,

S^M^ ; a.2 and a^ the observed arcs M.;^]^ and IT^JV, being the

differences of E.A. of the Sun and star on the two days.

During the day which elapses between the observations at

S.2, Ss, we may assume that the Sun's dccl. and R.A. both

vary at a uniform rate, so that the change in the decL is

always proportional to the corresponding change in R.A.-''

Therefore ^^ = «*=«^ = ''^-''
inereioie,

^^^^ S,M,-S,M, dT^d,

^2— ^8 ^2— ^3

and M]}^= M^N--M,3I= a,-^-f:^{a..-a,).
d.2— d.^

Now we have shown that

tMi = M:Oz :

^•.^. rN-M,]^= MJV- :OzJ^;

J/i\^+ i/;iV^= T iV^+ :2: iV^= 2 TiV- 1 80°

= 2TiV^-12 hours;

= 6h. + |
I
a,-{-a,—J—^\a.,-a,)

This determines T-^, the star's E-.A., in terms of a^, a,^^ rtg, the

observed differences between the times of transit of the Sun
and star, and <?,, dc,, d.^, the Sun's declinations at the three

observations. But we need not even find the declinations, for

di = l—Zi, d^ = Z— Sj, d^ = l—%;

therefore, substituting, we have

TiV^= 6h. + | j«i + «,-^^^=^ {a,-a,) ] .

L Z3— ^2 ;

In applying either of the above methods to the numerical calcula-

tion of the right ascension of any star, it is advisable to follow the
various steps as we have described them, instead of merely sub-
Btituting the numerical values of the data in the final formula?.

* In other words, we assume, as in Trigonometry, that the
" principle of proportional parts " holds for the small variations in

decl. and R.A. during the day.
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*140. The Advantages of Flamsteed's Method.—Among these
the following may be mentioned.

1st. The method does not require a knowledge of the latitude, for

we do not require to find the Sun's declination. Hence, errors

arising frpm inaccurate determination of the latitude are avoided.

2nd. One great source of error in determining Z.D.'s is the refrac-

tion of the Earth's atmosphere. Since the Sun is observed each
time in the same part of the sky, Zj, Zg, ^3 will be nearly equally
affected by refraction. Hence, the "principle of proportional

parts" will hold, so that the small differences in the true Z.D.'s

are proportional to the differences in the observed Z.D.'s. Hence
we may use the observed Z.D.'s uncorrected for refraction.

Example.

To find the Eight Ascension of Sirius and the clock errors in

March and Sept., 1891, from the following data, the rate of the clock

being supposed correct. (Decl. of Sii-ius = 16° 34' 2" S.)

Mar. 25, 1891. Sept. 18. Sept. 19

Decl. of Sun at noon...

Time of transit of Sun
.Time of transit oiSirius

1° 48' 56"

Oh. 15m. 36s,

6h. 39m. 10s,

1° 53' 0"

llh.42m.42s
6h. 40m. 25s

1° 29' 43"

llh. 46m. 17s.

6h. 40m. 25s.

OnMar.25,(R.A.of /Sirius)— (Sun'sR.A.) =6h. 39m. 10s. - Oh. 15m. 36s.

=6h.23m.34s.
Hence, in angular measure, the difference of E.A. is about 96°.

Draw the diagram as in Pig. 52, but make the angle 81PN = 96°; iV

will therefore lie between My and M^, instead Of where represented.

Also, since Sirius is south of the equator, it should be represented

at a point x on FN produced through N. In this figure we shall have

Si3fi = 1°48'56"; MiN = 6h.39m.lOs. -0h.15m.36s. = 6h.23ra.34s.

S.2M2 = 1°53' 0"; NM. = llh.42m.42s.-6h.40m.25s. = 5h. 2m.l7s.

Sailfs = 1°29'43"; NM^ = llh.46m.l7s.-6h.40m.25s. = 5h. 5m.52s.

Also, 8M is by construction equal to SiMi.
Hence, applying the principle of proportional parts, we have

McjM ^ S.Mo^-SjMi ^ 4' 4" ^ 244

M.M3 S.mI-S^Ms 23' 17" 1397'

and HUM^ = 3m. 35s. = 215s.

;

.-. 3i.M = 215 X 244/1397 = 37*5 seconds

;

.-. NM = 5h. 2m. I7s. + 37s. = 5h. 2m. 54s.

Now, NMi-mi = NT -N:ii. = 2Nr -12h.
hence, TN = 6h. + iiNMi-NM) = 6h. + i(6h.23m.34s.-5h.2m.54s.)

= 6h. + i(lh. 20m. 40s.) = 6h. 40m. 20s.

. Thus the right ascension of Siritis = 6h. 40m. 20s.

Also, clock error in March = 6h.40m.20s.-6h.39m.l0s. = + Im. lOs.

„ „ Sept. = 6h.40m.203.-6h.40m.25s. = - 5s.
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141. Precession of the Equinoxes.—Thus far we have

treated the first point of Aries as being fixed, and this will

evidently be the case if the equator and ecliptic are fixed in

direction. But if the right ascensions of various stars are

observed over an interval of several years, it will be found

that the position of the first point of Aries is slowly changing,

and that it moves along the ecliptic in the retrograde direc-

tion at the rate of about 50*2" in a year. This motion is

called Precession of the Equinoxes, or, briefly, Precession.
Precession is found to be due almost entirely to gradual

changes in the direction of the plane of the equator, the

ecliptic remaining almost fixed among the stars. Its effect is

to produce a yearly increase of 50-2" in the celestial longi-

tudes of all stars, their latitudes being constant.

In a large number of years the effect of precession will be
considerable. Thus, T will perform a complete revolution

in the period

—

—

years, i.e.^ about 25,800 years.
5U'2

At the present time the vernal equinoctial point has moved
right out of the constellation Aries into the adjoining con-

stellation Pisces. It still, however, retains the old name of
" Pirst Point of Aries." Similarly, the autumnal equinoctial

point is in the constellation Yirgo, but it is still called the
" Pirst Point of Libra." .

The rate of precession can be found very accurately by
observations of the first point of Aries separated by a con-

siderable number of years. The larger the interval, the
larger is the change to be observed, and the less is the result

affected by instrumental errors.

*142. Correction for Precession in using Flamsteed's Method.

—

During the interval that elapses between the two observations in
Flamsteed's method, the right ascension ofthe observed star will have
increased slightly, owing to precession, and the R.A. given by the
formula will be the arithmetic mean of the R.A.'s at the times of
the two observations.f As the change in R.A. is very approximately
uniform, this mean will be the star's E.A. at a time exactly half
way between the two observations, i.e., at the summer solstice.

t This may be most readily seen by imagining the equator and
ecliptic to be at rest, and the change in R,A. to be due to motion of
the star.
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143. Determination of Obliquity of Ecliptic.—The
method now used for finding the obliquity of the ecliptic is

similar in principle to that of § 38, but the Sun's meridian

zenith distance is observed by means of the transit cii'cle

instead of the gnomon.

The obliquity is equal to the Sun's greatest declination at

one of the solstices. Since observations with the Transit.

Circle can only be performed at noon, while the maximum
declination will probably occur at some intermediate hour of

the day, it will be necessary, in exact determinations, to

make observations of the Sun's decl. for several days before

and after the solstice. From these it is possible to determine

the maximum decl. ; the method is, however, too complicated

to be described here. For rough purposes the Sun's greatest

noon decl. may be taken as the measure of the obliquity.

144. When the position of T has been determined, the
obliquity can also be found by a single observation of the

Sun's E.A. and decl. For we thus find the two sides T^,
MS of the spherical triangle tMS, and these data are

sufiicient to determine both the obliquity MtS, and the
Sun's longitude tS.
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Section III.

—

The EarWs Orlit about the Sun.

145. Observations of the Sun's Relative Orbit.—By
daily observations with the Transit Circle, the decl. and R.A.
of the Sun's centre at noon are found for every day of the

year. Prom these data the Sun's long, is calculated, as

in § 144, by solving the spherical triangle TSM (Fig. 53).

If the obliquity of the ecliptic is also known, we have three

data, any two of which suffice to^determine the long., T S.

Thus the accuracy of the observations can be tested, and the

Sun's motion at various times of the year can be accurately

determined.

Although the determination of the Sun's actual distance

from the Earth in miles is an operation of great difficulty, it

is easy to compare the Sun's distance from the Earth at dif-

ferent times of the year, for this distance is always inversely

proportional to the Sun's angular diameter. This property is

proved in § 4, but numerous simple illustrations may also

be used to show that the angular diameter of any object varies

inversely with its distance (see'§ 4).

The Sun's angular diameter may be readily observed by
means of the Heliometer ; or, if preferred, any other form of

micrometer may be used. The Sun's distances at two different

observations will be in the reciprocal ratio of the corresponding
angular diameters. Thus, by daily observation, the changes
in the Sun's distance during the year may be investigated.

If the circular measure of the Sun's angular diameter is

2r, then -n-r^ is called the Sun's apparent area. In fact,

this is the area of a disc which would look the same size as

the Sun if placed at unit distance from the eye.

Example.

The Sun's angular diameter is 31' 32" at midsummer, and 32' 36"
at midwinter. To find the ratio of its distances from the Earth at
these times.

The distances being inversely proportional to the angular dia-
meters, we have

Dist. at midsummer ^ 32' 36" ^ 1956 _ 489 _ ..
,

Dist. at midwinter 31' 32" 1892 ~ 473
~ ^° nearly.

Hence the Sun is further at midsummer than at midwinter, in the
proportion of very nearly 31 to 30.
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146. Kepler's First and Second Lav7s.—We may now
construct a diagram of the Sun's relative orbit. Let IJ repre-

sent the position of the Earth, Et the direction of the first

point of Aries. Then, by making the angle tES equal to the

Sun's longitude at noon, and ES proportional to the Sun's

distance, we obtain a series of points jS, S'...,Sy.. , representing

the Sun's position in the plane of the ecliptic, as seen from
the Earth at noon on different days of the year. Draw the

curve passing through the points >S, ^'... , S^...\ this curve will

represent the Sun's orbit relative to the Earth, and it wiU be
found that

I. The Snn's annual path is an ellipse, of which the
Earth is one focus.

II. The rate of motion is everywhere such that the
radius vector (i.e., the line joining the Earth to the
Son) sweeps out equal areas in equal intervals of time.

These laws were discovered by Kepler for the motion of

Mars about the Sun, and he subsequently generalized them by *

showing that the orbits of all the other planets, including the

Earth, obeyed the same laws. In their general form they are

known as Kepler's Pirst and Second Laws, [See p. 253.] ^

^7^^«V^

Fig. 54.

147. Perigee and Apogee.—When the Sun's distance

from the Earth is least, the Sun is said to be in perigee.
When the distance is greatest, the Sun is said to be in apogee
The positions of perigee and apogee are called the two

Apses of the orbit ; they are indicated at p, a in Eig. 54,

The line pJEa joining them is the major axis of the ellipse

CEllipse, 4), and is sometimes also called the apse line.



THE sun's APPAEENT MOTION IN TKE ECLIPTIO. 107

148. Verification of Kepler's First Law.—The Sun's

angular diameter is observed to be greatest on Dec. 31,

and least on July 1 ; we therefore conclude that these are the

days on which the Sun passes through perigee and apogee

respectively. The positions of perigee and apogee being thus

found, the angle xEp is known, which is the long, of perigee.

Trom the winter solstice to perigee is about 10 days.

Hence, duriu'g this interval the Sun will have moved through

an angle of about 10°
;

.-. longitude of perigee = 270°+ 10° = 280° roughly.

To verify that the orbit is an ellipse, it is now only neces-

sary to show that the relation connecting ES and the angle

pES is the same as that which holds in the case of the ellipse.

If the orbit is an ellipse of eccentricity e, we must have
ESy.{\-\-e cospES) = I (a constant). (Ellipse, 3.)

Therefore the Sun's angular diameter must be always pro-

portional to 1 + ^ cospES.
As the result of numerous observations, it is found that

this is actually the case, and the truth of Kepler's First Law
for the Sun's orbit relative to the Earth is confirmed.

149, To find e, the eccentricity of the ellipse, the

best plan is to compare the greatest and least angular dia-

meters of the Sun, i.e., the diameters at perigee and apogee.

Since at these positionspES becomes 0° and 180° respectively,

we have, from above,

ang. diam. at p : ang. diam. at « = l/Ep : IfEa
= 1-1-^008 0°

: l + ^cosl80° = 1-i-e : 1-e.

from which proportion e can be found.

Taking the angular diameters at perigee and apogee to bo
32' 36" and 31' 32" (as in the Ex. of § 145), the Sun's distances

at those times are in the ratio of 1956" : 1892", or 489 : 473
;

1-f-g _ 489 . _ 489-473 _ 16 _ _8_" l-e 473 " ^"489 + 473 ~ 962 "481'

Hence e is very nearly equal to 1/60.
The Nautical Almanack contains a table giving the Sun's

angular diameter daily throughout the year. The average
angular diameter may be taken as 32' approximately.
Owing to the smallness of e, the orbit is very nearly circular,

being, really, much more nearly so than is shown in Fig. 54.

ASTROX. I
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150. Verification of Kepler's Second Law.—It is

found, as the result of observation, that the Sun's increase in

longitude in a day, at different times of year, is always pro-
portional to the square of the angular diameter, and is, there-

fore, inversely proportional to the square of the Sun's distance.

From this it may be deduced (as follows) that the area de-

scribed by the radius vector in one day is always constant.

Fig. 55.

Let SS' represent the small arc described by the Sun
in a day in any part of the orbit. Then the sector £SS' is

the area swept out by the radius vector. This sector does

not differ perceptibly from the triangle £SS' ; therefore, by
trigonometry,

area USS' = ^ES . E8' . sin SES'.

Since the change in the Sun's distance in one day is imper-
ceptible, we may write ES for ES' in the above formula
without materially affecting the result ; also, since the angle

SES' is small, the sine of SE8' is equal to the circular

measure of the angle SES'.
Therefore, area ESS' = ^ES" X Z SES '.

But, by hypothesis, the change of longitude SES' varies

inversely as E^% so that ES^ x Z SES' is constant

;

area ESS' is constant,

that is, the area described by the radius vector in a day is

constant. Thus, the area described in any number of days
is proportional to the number of days, and generally the ai'eas

described in equal intervals of time are equal.
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151. Deductions from Kepler's Second Law.
(i.) If the circular measure of tlie Sun's angular diameter

is 2r, then 7rr^ is the Sun's apparent area (§ 145). Hence
the Sun^s daily rate of change of loyigitude is proportional to

the apparent area of its disc.

(ii.) If T, J^, — 5 -^ represent the Sun's positions at the-

equinoxes and solstices, we have
Z T^Vr = z /r^^h = z :^FL - Z LET = 90°,

and it is readily seen from the figure that

area LEt < area £tEL < area yEK < area KE:Oz,

and the lengths of the seasons, being proportional to these

areas, are unequal, their ascending order of magnitude being

Winter, Autumn, Spring, Summer.
Their lengths are, at the present time (1891), about

89d. 0|h., 89d. 18ih., 92d. 20|h., 93d. 14|h.

(iii.) Since the intensity of the Sun's heat (§ 131) and its

rate of motion in longitude both vary as the inverse square of

its distance, they are proportional to one another. Hence
the Earth, as a whole, receives equal amounts of heat while the

Sun describes equal angles. In particular, the total quantities

of heat received in the four seasons are equal.

(iv.) The Sun's longitude changes most rapidly on Decem-
ber 3 1 , and least rapidly on July 1

.

(v.) Since the apse line, or major axis, pSa, bisects the
ellipse, the time from perigee to apogee is equal to the time from
apogee to perigee.

*152. To find the Position of the Apse Line.—
The Sun's distance remains very nearly constant for a short

time before and after perigee and apogee, hence it is difficult

to tell the exact instant when this distance is greatest or least.

For this reason, the following method is generally used:

—

The Sun's long, is observed at two points, S, S^, before and
after the apse, when its angular diameters, or its rates of

motion in long., are found to be equal. Then ES = ES^y
and the symmetry of the ellipse shows that /LpES = ipES^
and z aES = Z aES^. Hence the long, of the apse is the
arithmetic mean of the Sun's longitudes at the two observations.

153. Progressive Motion of Apse Line.—From such
observations, extending over a long period of years, it is found
that the apse line is not fixed, but has a forward or direct

motion in the ecliptic plane of 1 1 -25" in a year.
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164. The Sun's apparent annual motion may be
accounted for by supposing the Earth to revolve
round the Sun.

The annexed diagram will show how the Sun's annual
motion in the ecliptic, as well as the changes in the seasons,

may be accounted for on the theory that the Sun remains at

rest while the Earth describes an ellipse round it in the

course of the year in a plane inclined at an angle 23° 27^' to

the plane of the Earth's equator.

Fig. 56.

The distance of the nearest of the fixed stars is known to

be over 200,000 times as great as the Earth's distance from

the Sun. Hence, § 5 shows that the directions of the fixed

stars will not change to any considerable extent, as the

Earth's position varies. We shall, therefore, in the present

descri]ition, consider the directions of the stars to be fixed.

Tlie directions of the various points and circles of the celestial

sphere, such as the first point of Aries, will also be fixed.

On March 21, the Earth is at j&j, and the Sun's direction

JE'j/S determines the direction of T, the Eirst Point of Aries.
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The Sun is yertical at a point Q on the equator, and as the

Earth revolves about its axis through P, all points on the

equator will come vertically under the Sun. There is night

all over the shaded portion of the Earth, day over the rest.

The great circle bounding the illuminated part passes through

the pole P, and, therefore, bisects the small circle traced out

by the daily rotation of any point on the Earth ; thus, the

day and night are everywhere equal. At the pole P the Sun
is just on the horizon.

On June 21, the Earth is at K,, and the Sun's longitude

T^2^ = 90°. The Sun is vertical at a point on the tropic

of Cancer. Since the arctic circle is entirely in the illumi-

nated part there is perpetual day over the whole arctic zone.

On September 23, the Earth is at jEj, and the Sun's longi-

tude TJE^S is 180°. The Sun is once more rertical at a

point P on the equator, and the day and night are everywhere
12 hours long, as they are at JEJi.

On December 22, the Earth is at U^, and the Sun's longi-

tude tJS^S (measured in the direction of the arrow) is 270°.

The Sun is now at its greatest angular distance south of the

equator, and overhead at a point on the tropic of Capricorn
;

this tropic is not represented, being on the under side of the

sphere. Since the arctic circle is entirely within the shaded
part there is perpetual night over the whole arctic zone.

155. New Definitions and Facts.—According to the

theory of the Earth's orbital motion, Kepler's First and
Second Laws must be re-stated thus for the Earth.

I. The Earth describes an ellipse, having^ the
Sun in one focus.

II. The radius vector joining the Earth and Sun
traces out equal areas in equal times about the Sun.

The ecliptic is now defined asthe great circle of the celestial

sphere, whose plane is parallel to that of the Earth's orbit.

The Earth is nearest the Sun on December 31, and is then
said to be in perihelion. The Earth is furthest from the
Sun on July 1, and is then said to be in aphelion. Thus^
when the Sun is in perigee the Earth is in perihelion, when
the Sun is in apogee the Earth is in aphelion. The positions

of perihelion and aphelion are indicated by the letters p, a m
Fig. 56. The line joining them is the apse line.
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156. Geocentric and Heliocentric Latitude and
Longitude.—Hitherto we have been dealing only with the
directions of the celestial bodies as seen from the Earth.

In dealing with the motion of the planets, it is more con-
venient, as a rule, to define their positions by the directions
in which they wonld be seen by an observer situated at the
centre of the Sun.

In every case, the direction of a celestial body may be
specified by the two coordinates, celestial latitude and longi-

tude, which measure respectively the arc of a secondary from
the body to the ecliptic and the arc of the ecliptic between
this secondary and the first point of Aries (§ 17).

These coordinates are called the Geocentric Latitude
and Longitude when employed to define the body's geocen-
tric position, or position relative to the centre of the Earth.
The names Heliocentric Latitude and Longitude are
given to the corresponding coordinates when employed to

define the body's heliocentric position, or position relative

to the Sun's centre.

"When the distance of a fixed star is immeasurably great
compared with the radius of the Earth's orbit, its geocentric

and heliocentric directions coincide, and there is no difference

between the two sets of coordinates. There is a slight differ-

ence between the geocentric and heliocentric positions of a
few of the nearest fixed stars. But, in the case of the
planets, and of comets, the heliocentric latitude and
longitude differ entirely from the geocentric, and laborious

calculations are required to transform from one system of

coordinates to the other.

One fact may. however, be noted. The direction of the
Earth as seen from the Sun is always opposite to the direction

of the Sun as seen from the Earth. Hence,

The Earth's heliocentric longitude differs from the
Sun's geocentric longitude by 180°.

This may be illustrated by referring to Fig. 56. "We see

that rS£,= ,r SJE, = 90°, r ^^1 = 180°, T SU, = 270°;

thus, the Earth's longitude is 0° on September 23, 90° on
December 22, 180° on :ilarch 21, and 270° on June 21.
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EXAMPLES.—IV.

1. Describe the phenomena of day and night at a pole of the

Earth.

2. Show how to find how long the midwinter Moon when full is

above the horizon at a place within the arctic circle of given

latitude.

3. Show that the ecliptic can never be perpendicular to the

horizon except at places between the tropics.

4. Show that for a place on the arctic circle the Sun always rises

at 18h. sidereal time from December 21 to June 20, and sets at the

same sidereal time from June 20 to December 21.

5. Fiud the angle between the ecliptic and the equator in order

that there should be no temperate zone, the torrid zone and the
frigid zone being contiguous.

6. Show how, by observations on the Sun, taken at an interval of

nearly six months, the astronomical clock may be set to indicate

Oh. Om, Os. when T is on the meridian.

7. On March 24, 1878, at noon, the Sun's declination was
1° 29' 5"1", and the difference of right ascension of the Sun and a
star 6h. Im. 34'45s. On September 18, 1878, at noon, the Sun's
declination was 1° 49' 30'2", and it was distant from the star

oh. 27m. 32-97s. in right ascension. On September 19, 1878, at
noon, the Sun's declination was 1° 26' 12*8", and it was distant from
the star 5h. 31m. 8'3s. in right ascension. Find the right ascension
of the star and that of the Sun at the first observation.

8. Describe the appearance presented to an observer in the Sun
of the parallels of latitude and the meridians of the Earth, any day
(i.) between the vernal equinox and the summer solstice,

(ii.) between the autumnal equinox and the winter solstice.

9. If a sunspot be situated near the edge of the Sun's disc,

describe how its position, relative to the horizon, will change between
sunrise and simset.

10. Describe how the Sun's apparent velocity in the ecliptic
varies throughout the year; and give the dates of apogee and
perigee. Compare the daily motion in longitude at these dates,
having given that the eccentricity of the Earth's orbit is ^^q.
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EXAMINATION PAPEE.—lY.

1. What is the astronomical reason for the Earth being divided

into torrid, temperate, and frigid zones ?

2. Assuming your latitude to be 52°, show by a figure the daily

path of the Sun as seen by you on June 21, December 22, and
March 21 respectively.

3. Explain the causes of variation in the length of the day on the
Earth. Give the dates at which each season begins, and calculate

their lengths in days.

4. Discuss the variations in the length of the day at points within

the arctic circle ; and show how to find, by the Nautical Almanack,
the length of the perpetual day.

5. Prove that, in the course of the year, the Sun is as long above
the horizon at any place as below it.

6. Explain how it is that winter is colder than summer, although
the Sun is nearer.

7. Investigate Flamsteed's method of determining the first point

of Aries.

8. From the following observations calculate the Sun's K.A. on
March 30, 1872 :—

Sun's
declination.

Sun crossed

meridian.
a Serpentis

crossed meridian.

March 30, 1872...

Sept. 11, 1872 ...

Sept. 12, 1872 ...

4° 0' 8-1"

4° 20' 58-8"

3° 58' 3-0"

Oh. Im. 4-47s.

Oh. Im. 4-09s.

Oh. Im. 4-07s.

loh. Im. 54-76s.

4h. 19m. 11-38S.

4h. 15m. 49-33s.

9. State Kepler's First Law for the orbit of the Earth relative to

the Sun, and exj^lain how the eccentricity of the orbit can be found
by observations of the Sun's angular diameter.

10. State Kepler's Second Law, and find the relation between the

Sun's angular velocity and its apparent area.



CHAPTER V.

ON TIME.

Section I.

—

The Mean Sun and Equation of Time.

157. Disadvantages of Sidereal and Apparent Solar
Time.—In Chapter I., Sections II., III., we explained two
different ways of reckoning time. One of these, called

Sidereal Time, was defined by the diurnal motion of the first

point of Aries ; the other, called Apparent Solar Time, was
defined by the Sun's diurnal motion. We shall now show
that neither of these measures of time is suitable for every-

day use.

If we were to adopt sidereal time, the time of apparent

noon on any day of the year would be measured by the Sun's

E.A. on that day, and therefore would get later and later by
24h. during the course of the year.

Thus {e.a.), the time of noon would be Oh. on March 21,

6h. on June 21, 12h. on September 23, and 18h. on Decem-
ber 22, and the phenomena of day and night would bear no
constant relation to the time.

Apparent solar time is free from these disadvantages, but

it cannot be measured by a clock whose rate is uniform,

because the length of the solar day is not quite invariable.

In J 36 we showed that the difference between a solar and
a sidereal day is equal to the Sun's daily increase in R.A.,

and in § 31 we showed that this increase takes place at a rate

which is not quite the same at different times of the year.

Hence, the difference between a solar and a sidereal day is

not quite constant. But the length of a sidereal day is con-

stant (§ 22). Hence the solar day is not quite constant,

and a clock cannot be regulated so as to always mark exactly

Oh. Om. Os. when the Sun crosses the meridian.



116 ASTEONOMY.

158. The Mean Sun.
—

"Definitions.—To obviate tbese
disadvantages, another kind of time, called Mean Time, lias

been introduced, and this is the time indicated by clocks, and
used for all ordinary purposes. Mean Time is defined by
means of what is called the Mean Sun. This is not really

a Sun at all, but simply a point, which is imagined to move
round the equator on the celestial sphere.* The hour angle
of this moving point measures mean time, just as the hour
angle of t measures sidereal time ; and the mean Sun has to

satisfy the following requirements :

—

1st. It must never be very far from the Sun.

2nd. Its R.A. must increase uniformly during the year.

!N'ow the inequalities in the motion in E.A., which render
the true Sun unsuitable as a timekeeper, are due to two
causes.

1st. The Sun does not move uniformly in the ecliptic, its

longitude increasing less rapidly in summer than in winter

(§ 151).
.

2nd. Since the Sun moves in the ecliptic, and not in the
equator, its celestial longitude is in general different from its

E.A. (§ 31 ). Hence, even if the Sun were to revolve uni-

formly, its R.A. would not increase uniformly.

In defining the mean Sun, or moving point which measures
mean time, these two causes of irregularity are obviated

separately as follows :

—

The Dynamical Mean Sun is defined to be a point which
coincides with the true Sun at perigee, and which moves
round the ediiitic in the same period (a year) as the true
Sun, but at a uniform rate.

Thus, in the dynamical mean Sun, irregularities due to

the Sun's unequal motion in longitude are removed, but those
due to the obliquity of the ecliptic still remain.

The Astronomical Mean Sun is defined to be a point
which moves round the equator in such a way that its R.A.
is always equal to the longitude of the dynamical mean Sun.

* The conception of the mean Snn as a moving point is important.
It would be physically imjiossible for a lody to move in this manner.
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Since tlie longitude of the dynamical mean Sun increases

uniformly, the R.A. of the astronomical mean Sun increases

uniformly. Hence the motion of the latter point does give

us a uniform measure of time.

The astronomical mean Sun is, therefore, the moving point

chosen in defining mean time. It is usually called simply

the Mean Sun.

159. Mean Noon and Mean Solar Time.—Equation
of Time.

Mean Noon is defined as the time of transit of the mean
Sun.

A Mean Solar Day is the interval between two successive

mean noons. Like the apparent and sidereal days, it is

divided into 24 mean solar hours. During this interval, the

hour angle of the mean Sun increases from 0° to 360°.

Hence the mean solar time at any instant is measured by
the mean Sun's hour angle, converted into time at the rate

of Ih. per 15°, or 4m. per 1°.

The Sun itself is frequently spoken of as the True Sun,
or Apparent Sun, to distinguish it from the mean Sun.

As explained in § 36 the hour angle of the true Sun measures

the apparent solar time, and its time of transit is called

apparent noon.

The Equation of Time* is the name given to the amount
which must be added to the apparent time to obtain the mean
time.

Thus, the time indicated by a sun-dial (§ 167) is determined

by the position of the shadow thrown by the true Sun, and is

the apparent solar time ; while a clock, which should go at a

uniform rate, is regulated to keep mean time. The equation

of time will then be defined by the relation,

(Time by clock )=(Time by dial) -|- (Equation of time).
At apparent noon the sun-dial will indicate 12h., or, as it

is more conveniently reckoned. Oh. Hence,

Equation of time = Mean time of apparent noon.

* Thus, "equation of time" is not an equation at all in the
generally accepted sense of the word, but an interval of time (posi-

tive or negative).
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The equation of time is positive if the Sun is " after the

clock," or the true Sun transits after the mean Sun. If the

Sun is " before the clock," or the true Sun transits first, the

equation of time is negative. The value of the equation of

time for every day in the year is given in most almanacks,

under the heading " Sun before clock," or '* after clock."

160. The equation of time is divided into two parts. The
first, which is called the equation oftime due to the eccen-
tricity, or to the unequal motion, is measured by the

difference between the hour angles of the true and dynamical

mean Suns. The second, or the equation due to the
obliquity, is measured by the difference of hour angle

between the dynamical and astronomical mean Suns.

161. Equation of Time due to Unequal Motion.—
We shall now trace the variations during the year of that

portion of the equation of time which is due to the Slin's

unequal motion in the ecliptic. We shall denote this portion

by E,.

Ltt the true Sun be denoted by /S, and the dynamical mean
Sun (which moves in the ecliptic) by S-^, If angles are

measured in time, then

E^ = (hour angle of >Si)-(hour angle of >S) = Z SFSi
;

.-. E, = (R.A. of S) -(E.A. of S,)
;

since E.A. and hour angle are measured in opposite directions.

When the Sun is in perigee {p) (on December 31), S^ coin-

cides with S by definition ;
.-. JE^=: 0.

From perigee (p) to apogee («), the Sun, has described 180°,

and the time taken is (§ 151, v.) half that of a complete

revolution. • Hence, S^ will also have described 180°
;

.-.at apogee (July 1), E^is again O.

Now (§ 151, iv.) S is moving most rapidly at perigee, and

most slowly at apogee. Hence, after perigee, >S will have got

ahead of S^, and after apogee, S will have got behind S^.

Thus : From perigee to apogee, E^ is positive,

From apogee to perigee, E^ is negative.

and E^ vanishes twice a year, viz., at perigee and apogee.
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162. Equation of Time due to Obliquity.—Let the
portion of tlie equation of time due to the obliquity be
denoted by ^,.

Take S^ on the equator so that tS^= T S^. Then ^3
will be the astronomical mean Sun. Draw FS^M, the
secondary to the equator through S^. Then

^ -E'2 = hour angle of >S2— lio^r angle of S^

= Z SiPS,2 (taken positive if S^ is west of S^)

= z rPS,~ z rFS,= tM^tS^^ tM-tS,,
all angles being supposed converted into time at the rate

of 15° to the hour.

JiuicZI

At the vernal equinox,* when S^ is at T, S^ will also be

atr. r ..E,= 0.

Between the vernal equinox and summer solstice, the angle

tS^M will be < 90°, and, therefore, < T^fS^; hence,

.-. tM < tS^ ;
.'. E^ is negative.

* The vernal and autumnal equinoxes are, strictly, the times when
S, and not S,, coincides with the equinoctial points, but, as Sj is

always near S, the distinction need not be considered here. The
same remarks apply to the solstices.
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At the summer solstice, S^ is at C, and S, at Q, Tvliere

rQ= rC= 90°. Hence (Sph. Geom., 2l),rQC = 90°;
and i!f is also at Q ; .. ^^ = 0.
Between the summer solstice and autumnal equinox we

shall have if£i < >S,:fi, But tMzOi = T>S'i£i = 180°-
.-. rM>rS, ;

.-. rM>rS, -, .-. e, is positive.
At the autumnal equinox, since T C d^ = tQ £}: = 180°,

^1, ^2 "^ill ^oth coincide with £i; .«. J^Jg = O.

Jiut&2l

Fig. 58.

In a similar manner we may show that

:

From the autumnal equinox to the winter solstice, E^ is
negative.

At the winter solstice, JEJg = 0.

From the winter solstice to the vernal equinox, E^ is

positive.

Collecting these results, we see that

(i.) Prom equinox to solstice B^ is negative,

(ii.) Prom solstice to equinox E^ is positive.

(iii.) Ei vanishes four times a year, viz., at the
equinoxes and solstices.
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163. Graphic Representation of Equation of Time.
—The values of the equation of time at different seasons may
now be represented graphically by means of a curved line, in

which the abscissa of any point represents the time of year,

and the ordinate represents the corresponding value of the

equation of time.

In the accompanying figure (Fig. 59) the horizontal line

or axis from JS^ to JS^ represents a year, the twelve divisions

representing the different months as indicated. The thin curve

represents the values of JS^, the portion of the equation of

time due to the unequal motion ; this curve is obtained by
drawing ordinates perpendicular to the horizontal axis and
proportional to JSy Where the curve is below the horizontal

line JEi is negative.

^m y^^T^s^.jjiZ^^^ :":::'_ 's^^_

£,
>-^t^^]S.,, ^^>>y< 'X i

1 \23 2s/
h

Ja.n f4;6 3fnr\:.-lpr Mnif Jwife^^J^ Auq .SfpKUCt
1
N0^^ \pt^ ^,

\. 1 ^r "^~~~~~~— l\j.—-"^^
L.._ rs^^i^ >j,i;,;>^_^y

Fig. 59.

The thick curved line is drawn in a similar manner, and
represents, on the same scale, the values of JS!_j, the equation

of time due to the obliquity.

In drawing the diagrams to scale, it is necessary to know
the maximum values of ^„ E^. These can be calculated,

but the calculations do not depend on elementary methods
alone. We shall therefore have to assume the following
facts :

The greatest value of E^ is about 7 minutes.

i?2 10

Hence the greatest distances of the thin and thick curves
from the horizontal axis should be taken to be about 7 and 10
units of length respectively.
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"We may now draw the diagram
equation of time. We have

representing JE, the total

Hence, at every point of the horizontal line we must erect
an ordinate whose length is equal to the algebraic sum of the
ordinates (taken with their proper sign) of the two curves
which represent U^ and JS^. The extremities of these ordi-

nates will determine a new curve which represents JE,

Fig. 60.

This curve is drawn separately in the annexed diagram
(Fig. 60). It cuts the horizontal axis in four points. At
these points the ordinate vanishes, and U is zero. Hence,

The Equation of Time vanishes four times a year.

164. Alternative Proof.—But without representing the

values of the equation of time graphically, it can be readily

proved that £ vanishes four times a year. The proof

depends on the fact stated in the last paragraph, that

TI)e greatest equation of time due to ihe obliquity is greater

than the greatest equatioti due to the eccentricity.
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Erom § 162 it is evident that B.-^ must attain its greatest

positive value some time between a solstice and the following

equinox, and its greatest negative value between an equinox
and the following solstice. These maxima occur, in fact, in

the months

:

February, May, August, jN'ovember.

Their values, with the proper signs, are respectively about

+ 10m., -10m., +10m., —10m.

Now, E^^ is never greater than the maximum value of 7m.

;

hence, whether E^ is positive or negative, the total equation,

Ey+ ^25 corresponding to either of these maxima, must have
the same sign as E^. Hence, in the year beginning and ending
with the date of the maximum value of E^ in February, E
will have the following signs alternately :

+ - + - +
Thus, E changes sign, and therefore vanishes, four

times in the year.

165. Miscellaneous Remarks.—From Fig. 59 it will

be seen that the largest fluctuations in the equation of time

occur in the autumn and winter months ; during spring and
summer they are much smaller.

The days on which the equation of time vanishes are about
April 16, June 15, September 1, -and December 25.

Between these days E increases numerically, and then
decreases, attaining a positive^r negative value at some inter-

mediate time. These maxima are :

+ 14m. 28s. on February 11 ;* —3m. 49s. on May 14
;

-f 6m. iVs. on July 26
;

—16m. 21s. on "November 3.

166. Inequality in the Lengths of Morning and
Afternoon.—If we neglect the small changes in the Sun's

declination during the day, the interval fi'om sunrise to

apparent noon is equal to the interval from apparent noon to

sunset (§ 37). But by morning and afternoon are meant the *

intervals between sunrise and mean noon, and between mean
noon and sunset respectively. Hence, unless mean and appa-

rent noon coincide, i.e., unless the equation of time vanishes,

the morning and afternoon will not be equal in length.

ASTEOIS'. K
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Let r, 8 be tlie mean times of sunrise and sunset, £ the

equation of time. Then

1 21i. — r = interval from sunrise to mean noon.

But apparent noon occurs later than mean noon by JS;

.-. 12h..— r+ I^— interval from sunrise to apparent noon.

Similarly, s—JE= interval from apparent noon to sunset

;

.-. l2h.^r+.E=8-i:,
or r-\-s =12h. + 2i:,

so that the sum of the times of sunrise and sunset
exceeds 12 hours by twice the equation of time.

The length of the morning is 12h. — r, and that of the

afternoon is s. Now the last relation gives

2F=s-~{l2-r);
.-. 2 (equation of time)

= (length of afternoon)— (length of morning)*

About the shortest day (December 22) the curve represent-

ing the equation of time is going upwards, hence ^ h
increasing. But the length of day is changing very slowly

(because it is a minimum), hence, for a few days, the half

length, s—IJ, may be regarded as constant. Hence, s must
increase, and, therefore, the mean time of sunset is later

•each day. Similarly, it may be shown that sunrise is also

later. The afternoons, therefore, begin to lengthen, while

the mornings continue to shorten.

Similarly, about June 21, the afternoons continue to

lengthen a^ter the longest day, although the mornings are

already shortening.

Example.—On Nov. 1, the sun-dial is 16m. 20s. before the clock.

Given that the Sun rose at 6h. 54m., find the time of sunset.

Time from sunrise to mean noon = 12h. — 6h. 54m. = 5h. 6m.

„ „ apparent noon to mean noon = Oh. 16m. 20s.

„ „ sunrise to apparent noon = 4h. 49m 40s.

„ „ apparent noon to sunset = 4h. 49m. 40s.

„ „ mean noon to sunset
= 4h. 49m. 40s. -16m. 20s. = 4h. 33m. 20s.

Hence, the time of sunset was 4h. 83m., correct to the nearest
aninute.
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Section II.

—

The Sun-dial.

167. The Sun-dial consists essentially of a rod or flat

blade, called a gnomon or style (
OA, Pig. 61), which is fixed

with its edge parallel to the Earth's axis, and therefore

pointing in the direction of the celestial pole. The shadow
from OA is thrown on the dial-plate, which is usually either

horizontal or on a wall facing south. The direction of the

edge of the shadow determines the hour angle of the Sun,
and therefore the apparent time.

Fig. 61.

The plane through OA, the edge of the style, and through

the edge of the shadow, evidently passes through the Sun

;

also it passes through the celestial pole, therefore it will meet
the celestial sphere in the Sun's hour or declination circle.

Let OA XII. be the meridian plane, which is the plane of the

shadow at apparent noon, and whose position is supposed

known. Then, in order to graduate the plate for the times

1, 2, 3... o'clock, it is only necessary to determine the posi-

tions of the planes OAi., OAu., OAiii., &c., which make
angles of 15°, 30°, 45°, &c., with the meridian plane. Since

the Sun's hour angle increases 15° per hour, these planes will

be the planes bounding the shadow at 1, 2, 3... o'clock

respectively. If we join the points Oi., On., Oiii., &c., these

will be the corresponding lines of shadow in the plane of the

gnomon, and will meet the circumference of the dial-plate

(which is usually circular) at the required points of

graduation 1, 2, 3, &c.
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168. Geometrical Method of Graduating the Dial-

plate.—To find the planes OAi., OAii., &c., suppose aplaue

AlfE drawn tlirongli A perpendicular to OA, meeting the

plane of the dial-plate in KE and the meridian plane in ^xii.

If, in this plane, we take the angles xu.Ai., i.Aii., u.Ain.,

&c., each= 15°, the points i., ii., m...., «S:c., will evidently

determine the ' directions of the shadow at 1, 2, 3,... o'clock

respectively.

Fig. 62

But in practice it is much more convenient to perform the

construction in the plane of the dial itself. Imagine the

plane AKR of Pig. 62 turned about the line KR till it is

brought into the plane of the dial, the point A of the plane

being brought to ^^(Fig. 62). Then, by making the angles

XII. &!., I. C^n., n. JJiii., &c., each = 15°, we shall obtain the

same series of points i., ii., ni. as before.

If the dial-plate is horizontal^ and I is the latitude of the

place (xn. 0-4), we have evidently therefore the following

construction :

—

On the meridian line, measure xn. = OA sec I, and

xn. ?7'= xii. A = Oxn. sin I. Draw Xxii. ^perpendicular

to OU. Make the angles xii. ?7i., i.TTn., ii. ^iii., &c.,

each = 15°, taking i., n., m., &c., on KR. Join Oi., On.,

Om., &c., and let the joining lines meet the circumference

of the dial in 1, 2, 3, &c. These will be the required

points of graduation for 1, 2, 3,... o'clock respectively.
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Section III.— Units of Time—The Calendar.

169. Tropical, Sidereal, and Anomalistic Years.—
Hitherto we have defined a year as the period of a complete

revolution of the Sun in the ecliptic. In order to give a

more accurate definition, however, it is necessary to specify

the starting point from which the revolution is measured.

"We are thus led to three different kinds of years.

A Tropical Year is the period between two successive

vernal equinoxes, or the time taken by the Sun to perform a

complete revolution relative to the first point of Aries.

The length of the tropical year in mean solar time is very
approximately 365d. 5h. 48m. 45*5 Is. at the present time.

For many purposes it may be taken as 365j days.

A Sidereal Year is the period of a complete revolution

of the Sun, starting from and returning to the secondary to

the ecliptic through some fixed star. Thus, after a sidereal

year the Sun will have returned to exactly the same position

among the constellations.

If T were a fixed point among the stars, the sidereal and
tropical year would be exactly of the same length. But T
has an annual retrograde motion of 50-22" among the stars

(§ 141). Consequently, the tropical year is rather shorter

than the sidereal.

An Anomalistic Year is the period of the Sun's revo-

lution relati^'e to the apse line—in other words, the interval

between successive passages through perigee.

Owingto the progressive motion of the apse line, the positions

of perigee and apogee move forward in the ecliptic at the rate

of 11 "25" per annum (§ 153). Hence the anomalistic year is

rather longer than the sidereal.

It is easy to compare the lengths of the sidereal, tropical,

and anomalistic years. For, relative to the stars,

In the sidereal year the Sun describes 360°,

In the tropical year it describes 360°— 50-22",

In the anomalistic year it describes 360°+ 11-25"
;

.-. (Sidereal year) : (tropical year) : (anomalistic year)
= 360°

: 360°— 50-22": 360°+ ll-25'.
From this proportion it wiU be found that the sidereal year

is about 20 m. longer than the tropical, and 4|m. shorter than
the anomalistic.
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170. The Civil Year.—For ordinary purposes, it is

importantthattheyear shall possessthcfollowingqiialifications:

1 st. It must contain an exact (not a fractional) number of days.

2nd. It must mark the recurrence of the seasons.

Now the tropical year marks the recurrence of the seasons,

but its length is not an exact number of days, being, as we
have seen, about 365d. 5h. 48m. 45*51s. To obviate this

disadvantage, the civil year has been introduced. Its length

is sometimes 365, and sometimes 366 days, but its average

length is almost exactly equal to that of the tropical year.

Taking an ordinary civil year as 365d., four such years

will be less than four tropical years by 23h. 15m. 2-04s., or

nearly a day. To compensate for this diSerence, every fourth

civil year is made to contain 366 days, instead of 365, and is

called a leap year. For convenience, the leap yewrs are chosen

to he those years the number of which is divisible by 4, such as

1892, 1896.

The introduction of a leap year once in eveiy four years

is due to Julius Ca?sar, and the calendar constructed on this

principle is called the Julian Calendar.
IS'ow three ordinary years and one leap year exceed four

tropical years by 24h.— 23h. 15m. 2-04s., i.e., 44m. 57-96s,

Thus, 400 years of the Julian Calendar will exceed 400

tropical years by (44m. 57-96S.) x 100, i.e., by 3d.2h.56m. 36s.

To compensate for this difference. Pope Gregory XIII.

arranged that three days should be omitted in everj- 400 years.

This correction is called the Gregorian correction and is

made as follows : Every year whose number is a multiple o/lOO is

tahen to be an ordinary year of ^Qb days, instead of being a leap

year of 366, unless the number of the century is divisible by 4;

in that case the year is a leap year.

Examples.— (i.) 1892 is divisible by 4, .'. the year 1892 is a
leap year, (ii.) 1900 is a multiple of 100, and 19 is not divisible

by 4, .". 1900 is not a leap year, (iii.) 2000 : the numbei- of tlie

century is 20, and is divisible by 4, .•. 2000 is a leap year.

The Gregorian correction still leaves a small difference

between the tropical year and the average length of the civil

year, amounting to only Id. 5h. 26m. in 4,000 years.

171. A Synodic Year is a period of 12 lunar months,

being nearly 355 days. The name is, however, rarely used.
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Section IY.— Comparison of Mean and Sidereal Times.

172. Relation between Units.—One of the most
important problems in practical astronomy is to find the

sidereal time at any given instant of mean solar time, and
conversely, to find the mean time at any given instant of

sidereal time. Before doing this it is necessary to compare
the lengths of the mean and sidereal days.

Wo have seen (§ 169) tliat a tropical year contains about

365:^ mean solar days. In this period both the true and
mean Sun describe one complete revolution, or SeO"^ fram
west to east relative to T ; or, what is the same thing, T
describes one revolution from east to west relative to the

mean Sun. But the mean Sun performs 365^ revolutions-

from east to west relative to the meridian at any place.

Therefore T performs one more revolution, i.e., 366^ revo-

lutions, relative to the meridian.

Now, a sidereal day and a mean solar day have been defined

(§§ 22, 159) as the periods of revolution of the mean Sua
and of T relative to the meridian

;

.'. 365j mean solar days = 366^ sidereal days.

From this relation we have,

One mean solar day =(14- -——^ )
sidereal day»

= (1+ -002738) sidereal days
= 24h. 3m. 56*5s. sidereal time
= 1 siderealday+ 4m. — 4s.nearly;

.'. one mean solar hour = Ih. + 10s. — -^s. sidereal time,

and 6m. of mean solar time = 6m. + Is. sidereal time nearly.

In like manner we have

One sidereal day =
(
1 — ) mean solar d-ay»

\ 366^^/

= (1 --002730) mean days
= 23h. 56m. 4* Is. mean time
= 1 mean day— 4m. -|-4s. nearly ;:

.-. one sidereal hour = Ih. — 10s. + ^s. of mean time,

and 6m. sidereal time = 6m. — Is. mean solartime nearly*
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173. rrom the results of the last paragraph we have the
following approximate rules :

—

(i.) To reduce a given interval of mean time to
sidereal time, add 10s. for every hour, and Is. for every

6m. in the given interval. For every minute so added, sub-
tract Is.

(ii.) To reduce a given interval of sidereal time
to mean time, subtract 10s. for every hour, and Is. for
every Qm. in the given interval. Then add Is. for every

minute so subtracted.

Example 1.—Express in sidereal time an interval of 13h. 23m. 25s.

mean time.

The calculation stands as follows :

—

Mean solar interval

Add 10s. per hour on 13h.... ... ,.,

„ Is. per 6m. on 23m. ... ... .„

Subtract Is. per Im. on 2m. 13-8s.

.-. Rectuired sidereal interval

Example 2.—Find the mean solar interval

14h. 45m. 53s. of sidereal time.

The calculation stands as follows :

—

Given sidereal interval

Sahtract 10s. per hour on 14h. = 2m. 20s.

„ Is. per 6m. on 46m. (nearly) = 8s.

Add Is. per Im. on 2m. 28s.

.'. Required interval of mean time =14 43 28

If accuracy to within a few seconds is not required, the

second correction of Is. per Im. may be omitted. On the

other hand, if the interval consists of a considerable number
of days, or if accuracy to the decimal of a second is needed,

the results found by the rules will no longer bo correct.

We must, instead, add 1/365^ of the given mean solar interval

to get the sidereal interval, or subtract 1/366^ of the given

sidereal to get the mean solar interval.

In order to still further simplify the calculations, tables

ha^e been constructed ; in most cases, these give the quantity

to be added or subtracted according as we are changing from

mean to sidereal, or from sidereal to mean time.

H. M. s.

= 13 23 25
2 10

4

13 25 39
2

= 13 25 37

COrresponding

H. M. s.

= 14 45 53

2 28

14 43 25
3
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174. To find the sidereal time at a given instant

of mean solar time on a given date at Greenwich.
The Nautical Almanack* gives the sidereal time of mean

noon at Greenwich on every day of the year.

I^ow the given mean time represents the number of hours,

minutes, and seconds which have elapsed since mean noon,

expressed in mean time. Convert this interval into sidereal

time ; we then have the sidereal interval which has elapsed

since mean noon. Add this to the sidereal time of mean
noon ; the result is the sidereal time required.

Thus, let m be the mean time at the given instant, mea-
sured from the preceding mean noon,

8^ the sidereal time of mean noon from the !N'autical Almanack,
and let h = 1/365| ; so that 1 + ^ is the ratio of a mean solar

unit to the corresponding sidereal unit.

Then, from mean noon to given instant,

Interval in mean time = m
;

.-. interval in sidereal time = m-\-hn
But, at mean noon, sidereal time = s^

.•.at given instant,

required sidereal time, sz=zs^-\-7n-\-hni.

If the result be greater than 24h., we must subtract 24h,, for

times are always measured from Oh. up to 24h.

Example.— Find the sidereal time corresponding to 8h. 15m. 40s.
P.M. on Dec. 20, given that the sidereal time of mean noon was
I7h. 5om. 8s.

From mean noon to the given instant, the interval in mean time
is 8h. 15m. 40s.

Converting this interval to sidereal time, by the method of § 173,
we have Mean solar interval = 8h. 15m. 40s.

Add 10s, per hour on 8h. Im. 20s.

Add Is. per 6m. on 15m. 40s. 3s.

8h. 17m. 3s.

Subtract Is. per Im. on Im. 23s. Is.

.*. Sidereal interval since mean noon = 8h. 17m. 23?
But sidereal time of mean noon = 17h. 55m. 8s.

.'. Sidereal time at instant required = 2()h. 12m. JOs.
Or, deducting 24h., sidereal time is = 2h. 12in. lOs.

*0r Whitaker^s Almanack, which may be used it' the Nautical is
not at hand.
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175. To find the mean solar time corresponding to
a given instant of sidereal time at Greenwich.

Subtract the sidereal time of mean iioon from tiie given
sidereal time ; this gives the interval which has elapsed since

mean noon, expressed in sidereal time. Convert this interval

into mean time
; the result is the mean time required.

Let ^' = l/366i
; so that 1 —k' is the ratio of a sidereal to a

mean solar unit.

Let the given sidereal time = «,

and let the sidereal time of the preceding mean noon =
^o >-

Then, from mean noon to given instant,

Interval in sidereal time = s—s^-,

.'. interval in mean time = (s—s^) — h\s —«(,).

.-. required mean time ni = («— Sq) —M^—^o)-
If 8 be less than 5^, we must add 24h. to s in order that the

times s, s^ may be reckoned from the same transit of T •

Example.—Find the solar time corresponding to 16h. 3m. 42s.
sidereal time on May 5, 1891, sidereal time at n>eau noon being
21i. 52m. 17s.

Sidereal interval since mean noon
= 16h. 3m. 42s. -21i. 52m. 17s. = 131i. 11m. 25s.

.'. Mean solar interval (§ 173) •

=, 13h. 11m. 25s. -2m. 10s. - 2s. + 2s. = 13h. 9m. 15s,
Hence, 13h. Qm. 15s. is the mean time; which, in our usual

reckoning, would be called Ih. 9m. 15s., on the morning of May 6

(§ 36). The sidereal time was dlso 16h. 3m. 42s._ a sidereal day
or 23h. 56m. 4s. previously, i.e., Ih. ISm.'lls. a.m. on the morning
of May 5. ' , -

176. To find the mean time corresponding to a
given instant of sidereal time at Greenwich (alterna-
tive method).—The JN'autical Almanack also contains the
mean time of " Sidereal Noon," i.e., the meau time when T
is on the meridian, and when the sidereal clock marks
Oh. Om. Os. Let this be Mq, and let s be the given sidereal

time, k' the factor 1/366^ as before. Then
From sidereal noon to given instant, sidereal interval = s

;

.*.
,, ,, ,, „ mean solar ,, =zs— k's.

But, at sidereal noon, mean time = m^
;

.•. at given instant,

The required mean time = n^^^•\-s— 7>^'s.
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177. To find the sidereal time from the mean solar,

or the mean time from the sidereal, in any given
longitude,—If the longitude is not that of Greenwich, the

abo\'e methods will require a slight modilieation, because the

sidereal time of mean noon and mean time of sidereal noon

are tabulated for Greenwich.

In such cases, the safest plan is as follows :

—

Find the

Greenwich time corresponding to the given local time (§ 96).

Convert this Greenwich time from mean to sidereal, or sidereal

to mean, as the case may hd, and then dnd the corresponding

local time again.

Let the longitude he Z° west of Greenwich (Z being nega-

tive if the longitude is east),

let m^ be the mean and s^ the sidereal local time,

m, s the corresponding times at Greenwich,

and let k, h\ m^^ s^ have the same meanings as in §§ 172-4.

By § 96 we have, whether the times be local or sidereal,

(Greenwich time)— (local time in long. Z" W.) = ^-V^h.
= 4Z m. Therefore, s - s^ = ^^L = m— m^.

(i.) If m^ is given and s-^ is required, we have (in hours),

m = m^+ jigZ.

By ^ 1 74, « = «o+ w^ + km = s^+ m, + krn^+ J^Z+ ^^kL
;

•

'
•

. .
-^^ — ^r I's^ — *ot ^"^+ .'' "* 1+ rV-^^-

(ii.) It 6-1 is given and m^ is required, we have
g -—

f. _| L /,

By §§ 175, 176, w = (s-s,) -//(V-^ or = m,+8-k%
I.e., m = (sj-So)-A-'(s^-6-^)-|- ^i-Z-yV^'Z

= m^+ Si- k's, + -^\Z—j\k'Z

;

Example.—Find the solar time when the local sidereal time is

5h. 17m. 32s. on March 21, the place of observation being Moscow
(long.' 37° 34'' 15" E.)

;
given that sidereal time of mean noon was

23h. 54m. 52s. at Greenwich.
Keduced to time (§ 23), 37° 34' 15" is 2h. 30m. 17s.
.•. Greenwich sidereal time at instant rJBquired

= 5h. 17m. 32s. -2h. 30m. I7s. = 2h. 47m. 153.

Sidereal interval since Greenwich noon
= 2h. 47m. 15s. + 24h -23h": 54m. 52s. = 2h. 52m. 23s.

.*. Greenwich mean time = 2h. 52m. 23s,— 20s. — 9s. = 2h. 51m. 54s.

.-. Moscow mean time = 2h. 51ni. 54s. + 2h. 30m. 17s. = 5h. 22m. lis
^
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178. Equinoctial Time.—Por the purpose of comparing

the times of observations made at different places on the

Earth, another kind of time has been introduced.

The Equinoctial Time at any instant is the interval of

time that has elapsed since the preceding vernal equinox,

measured in mean solar units.

The advantage of equinoctial time is that it is independent

of the observer's position on the Earth, since the instant when
the Sun passes through T is a perfectly definite instant of

time, and is independent of the place of observation. On the

other hand, mean time and sidereal time, being measured
from the transits of the mean Sun and of T across the

meridian, depend on the position of the meridian—that is, on
the longitude of the observer.

The chief disadvantage of equinoctial time is that since the

tropical year contains 365d. 5h. 48m. 46s., and not exactly

365 days, the vernal equinox will, occur 5h. 48m. 46s, later

in the day every year, so that at the end of each tropical year

the equinoctial clock will have to be put back oh. 48m. 46s.

Hence also the same equinoctial time will represent a different

time of day on the same date in different years.

The disadvantages of using local time are obviated in Great

Britain by the universal use of " Greenwich Mean Time."

179. Practical Applications.—In § 41 we showed how
to determine roughly the time of night at which a given star

would transit on a given day of the year. "With the intro-

duction of mean time, in the present chapter, we are in a
position to obtain a more accurate solution of the problem.

Eor the E..A. of any star (expressed in time) is its sidereal

time of transit. If this be given, we only have to find the

corresponding mean time ; this will be the required time

of transit, as indicated by an ordinary clock.

In the calculations required in converting the time from
one measure to the other, it is advisable 7iot to quote the

formula? of §§ 174-177, but to go through the various steps

one by one.

If neither the sidereal time of mean noon nor the mean
time of sidereal noon is given, we must fall back on the

rough method of § 35.
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Examples.

1. Find the solar time at 5h. 29m. 28s. sidereal time on July 1, 1891 j

mean time of sidereal noon being 17h. 20m. 8s.

Sidereal interval from sidereal noon to the"given instant = 5h.29m.28s.
.-. Mean solar interval =5h. 29m. 28s. - 50s. - 5s. + Is. = 5h.28m.34s.

i.e., Mean solar time = 5h. 28m. 34s. + l7h. 20m. 83. =22h. 48in. 42s.
j

or, lOh. 48m. 42s. A.M., July 2.

It was also 5h. 29m. 28s., a sidereal day or 23h. 56m. 4s. pre-

viously, i.e., lOh. 52m. 38s. a.m. July 1.

2. To find the mean time of transit of Aldebaran at Greenwich on
December 12, 1891. Given

jj_ jj^ g

R.A. of Aldeharan = 4 29 40

;

Sidereal time of noon, December 12, 1891 = 17 23 56.

Since the star's R.A. is less than the sidereal time of noon, we
must increase the former by 24h., in order that both may be mea-
sured from the same " sidereal noon." H. M. s.

Sidereal time of transit + 24h. = 28 29 40
Subtract „ „ noon = 17 23 56

.'. Sidereal interval from noon to transit =11 5 44
To convert into mean solar units, subtract I 49

/. Mean Solar interval from noon to transit =11 3 55
/. Aldeharan transits at llh.. 3m. 55s. mean time.

y 3. To find the (local) sidereal time at New York at 9h. 25m. 31s.

(local mean time) on the morning of September 1, 1891.

Longitude of New York = 74° W.
Sidereal time of mean noon at Greenwich, Sept. 1 = lOh. 42m. 24s.-^

The given local mean time is measured from midnight, therefore

we must take the time measured from noon as h. m. s.

August 31, 1891. = 21 25 31

LAdd

for 74° west longitude reduced to time = 4 56

.'. Greenwich mean time is, August 31,

or, September 1,

To convert this interval to sidereal units, add

.'. Sidereal time elapsed since Greenwich noon
But at Greenwich noon, sidereal time (by data)

•. Sidereal time at Greenwich is

Subtract for 74° west longitude,

•. Sidereal Time at New York = 8 18 9

26 21 31
2 21 31

24

2 21 55
10 42 24

13 4 19
4 56
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4. To find the Paris mean time of transit of Regulus at Nice on
December 26, 1891. H. M. s.

Longitude of Paris = 2° 21' E.E.A. of Regulus =10 2 34
Nice - 7° 18' E.

Sidereal time at Greenwich noon = 18 18 48

Here local sidereal time of transit at Nice =10 2 34
Subtract east longitude of Nice, T 18', in time 29 12

.*. Greenwich sid. time of transit at Nice + 24h. = 33 33 22
Subti'act Greenwich sidereal time at noon, 18 18 48

.•. Sidereal interval since Greenwich noon «= 15 14 34
To convert to mean solar units, subtract 2 30

.*. Greenwich mean time = 15 12 4
Add easMongitude of Paris, expressed in timo = 9 24

.-. Paris mean time of transit = 15 21 28

That is, 3h. 21m. 28s. in the morning on December 27.

5. Find the E.A. of the Sun at true noon on October 8, 1891, given
that the equation of time for that day is —12m. 24s., and that the
sidereal time of mean noon on March 21 was 23h. 54m. 52s.

Mean solar interval from mean noon March 21 to mean noon Oct. 8
= 201 days.

3Iean solar interval from mean noon to apparent noon on Oct. 8
= -12m. 24s.

.'. interval from mean noon on March 21 to apparent noon on Oct. 8
= 201d.-12m. 24s.

Now, in 365J days the mean Sun'si. R.A. increases 24h., and the

increase takes place quite uniformlij.

.'. increase in mean Sun's R.A. in 201 days H. M. s.

= 24h. X 201 -r 3651 = 13 12 27

Add mean Sun's R.A. on March 21

( = sidereal time of mean noon) = 23 54 52

.*. mean Sun's R.A. at mean noon Oct. S
or, subtracting 24h.,

Subtract change of R.A. in 12m. 24s.

.•. mean Sun's R.A. at apparent noon Oct. 8

But true Sun's R.A. — mean Sun's R.A
= equation of time =

,-. True Sun's R.A. at apparent noon Oct. 8 = 12h. 54m. 53s.

= 37 7 19
= 13 7 19
= 2

= 13 7 17

= -12 24
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EXAMPLES.—V.

1. To Tvliat angles do Sidereal Time, Solar Time, and Mean Time
correspond on the celestial sphere ? Are these angles measured
direct or retrograde ?

2. Draw a diagram of the Equation of Time, on the supposition

that perihelion coincides with the vernal equinox.

3. On May 14 the morning is 7'8 minutes longer than the after-

noon : find the equation of time on that day.

4. On a sun-dial placed on a vertical wall facing south, the
position of the end of the shadow of a gnomon at mean noon is

marked on every day of the year. Show that the curve passing
through these points is something like an inverted figure of eight.

5. Why are not the graduations of a level dial uniform ? Show
that they will be so if the dial be fixed perpendicular to the index.

6. Show that if every 5th year were to contain 366 days, every
25th year 367 days, and every 450th year 368 days, the average
length of the civil year would be almost exactly equal to that of the
tropical year. How many centuries would have to elapse before the
difference would amount to a day ?

7. Give explicit directions for pointing an equatorial telescope to
a star of R.A. 22h., declination 37° N., in latitude 50"^ N., longitude
25° E., at lOh. Greenwich mean time, when the true Sun's R.A. is

14h. 47m. 17s-., and the equation of time is —16m. 14s.

8. If the mean time of transit of the first point of Aries be
9h. 41m. 24"4s., find the time of the year, and the sidereal time of
an observation on the same day at Ih. 22.11. 13-5s.

9. At Greenwich, the equation of time at apparent noon to-day is

- 3m. 3942s., and at apparent noon to-morrow it will be —3m. 35'39s.
Prove that the mean solar time at New York corresponding to ap-
parent time 9 a.m. there this morning is 8h. 56m. 20"9s.. having given
that the longitude of New York is 74° 1' W.

10. Find the sidereal time at apparent noon on Sept. 30, 1878, at
Louisville ( long. 85° 30' W.) having given the following from the
Nautical Almanack :

—

At mean noon.
Sun's apparent right

ascension.

Sept. 30. 12h. 26m. 23-16s.

Oct. 1. 12h. 30m. 0-51s.

Equation of time
to be added to mean time.

10m. 0-77s.

10m. 19-98S.
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MISCELLANEOUS aUESTIOl^rS.

1. Explain how to determine the position of the ecliptic relatively

to an observer in S. latitude at a given time on a given day.

2. Indicate the position of the ecliptic relatively to an observer

at Cape Town (lat. 33° 56' 3"5" S.) at noon on August 3.

3. Explain why a day seems to be gained or lost by sailing round

the world. State which way round a day seems to be lost, and give

the reason why.

4. If the inclination of the ecliptic to the equator were 60°, instead

of 23° 2l\', describe what would be the variations in the seasons to

an observer in latitude 45°, illustrating your description with a
diagram.

5. Describe the changes of position in the point of the Sun's

rising at different times of the year, and at different points on the

Earth's surface.

6. If the equator and ecliptic were coincident, what kind of curve

would be described in space by a point on the Earth's surface, say

at the equator, dux-ing the course of the year ?

7. Examine when that part of the equation of time due to the

eccentricity of the Earth's orbit is positive.

8. On September 22, 1861, the times of transit of o Lyrx and of

the Sun's centre over the meridian of Greenwich were observed to

be ISh. 32m. 51-3s. and 12h. Om. 23-3s. by a sidereal clock whose

rate was correct. Given that the R.A. of o Lyrae was 18h. 31m. 43'9s.,

find the Sun's E.A. and the error of the clock.

9. Define mean time and sidereal time, and compare the lengths

of the mean second and the sidereal second.

10. If a, a' are the hour angles in degrees of the Sun at Greenwich,

at t and. t' hours mean time, show that the equations of time at the

preceding and following mean noons, expressed in fractions of an

hoi:"r, are respectively

a't-at '

o^ a'{24^-t)-a{24i-1f)

15(t'-0' \5{t'-t)
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EXAMINATION PAPER.—Y.

1. Define the dynamical mean Sun and the mean Sun, stating at

what points they have the same R.A., and when the former coin-

cides with the true Sun. Show that the mean Sun has a uniform

diurnal motion, and state how it measures mean time.

2. Define the equation of time. Of what two parts is it generally

taken to consist ? State when each of these parts vanishes, is

positive, or negative. Give roughly their maximum values, and

sketch curves showing their variations graphically.

3. Show that the equation of time vanishes four times a year.

4. If, on a cei-tain day, the sun-dial be 10 minutes before the clock,

what is the value of the equation of time on that day ? Will the

forenoon of that day or the afternoon be longer, and by how much ?

5. Define the terms solar day, mean solar day, sidereal day.

What is the approximate diiference and the exact ratio of the

second and third ?

6. Define the terms civil year, anomalistic year, equinoctial

time. Why was this last introduced ?

7. Show how to express mean solar time in terms of sidereal

time, and vice versa.

8. If the mean Sun's R.A. at mean noon at Greenwich on June 1

be 4h. 36m. 5-is., find the sidereal time corresponding to 2h. 35m. 45s.

mean time (1) at Greenwich, (2) at a place in longitude 25° E.

9. On what day of the year will a sidereal clock indicate lOh. 20m.

at 4 P.M. ?

10. In what years during the present century have there been

five Sundays in February ? When will it next happen ?

ASTEON. L



CHAPTEE VI.

ATMOSPHEEICAL llEFEACTIOK AND TWILIGHT.

180. Laws of Refraction.—It is a fundamental prin-

ciple of Optics that a ray of light travels in a straight line,

so long as its course lies in the same homogeneous medium
;

but when a ray passes from one medium into another, or

from one stratum of a medium
into another stratum of dif-

ferent density, it, in general,

undergoes a change of direction

at their surface of separation.

This change of direction is

oelled Refraction.*
Let aray of light S (Fig. 64)

pass at from one medium into

another, the two media being

separated by the plane surface

AB, and let OT be the direc-

tion of the ray after refraction

in the second medium. Draw
^0^' the normal or perpendicular to the plane AB at 0.

Then the three laws of refraction may be stated as follows :

—

I. Thodncident and refracted raijs SO, OT and the normal

ZOZ' all lie in one plane.

TT m i- sin ZOS
II. The ratio -—„. ^r,.

sinZ'OT
is a constant quantity^ being the same for all directions of the

rays, so long as the two media are the same.]

This constant ratio is called the relative index of
refraction of the two media, and is usually denoted by the

Oreek letter /n.

* For a fuller description, see Stewart's Light, Chap. VI.

t The value of the ratio varies slightly for rays of different colours,

but with this we are not concerned in the present chapter.

A y B

/

T z

Fig. 64.
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Thus, if TO be produced backwards to S\
sin ZO^ = fi sin Z'OT = fi. sin ZOS',

The angles ZOS and Z' OT are usually called the angle of
incidence and the angle of refraction respectively.

III. When light passes from a rarer t) a denser medium, the

angle of incidence is greater than the angle of refraction.

Since aZOS> /.Z'OT, ^mZOS> sinZ'OTand .-. /t>l.

181. General Description ofAtmospherical Refrac-
tion.—If the Earth had no

,

atmosphere, the rays of light

proceeding from a celestial

body would travel in straight

lines right up to the obser-

ver's eye or telescope, and we
should see the body in its

•actual direction.

Butwhen a ray Sa (Fig. 65)
meets the uppermost layer

AA' of the Earth's atmo-

sphere, it is refracted or bent

out of its course, and its direc- ^^^- ^^•

tion changed to ah. On passing into a denser stratum of aii

at BB\ it is further bent into the direction i<?, and so on

;

thus, on reaching the observer, the ray is travelling in

a direction OT, different from its original direction, but
(by Law I.) in the same vertical plane.

The body is, therefore, seen in the direction OS',

although its real direction is aS or OS. Also, since th<3

successive horizontal layers of air AA', BB', CC, ...

are of increasing density, the effect of refraction is to

bend the ray towards the pei^pendicular to the surfaces of

separation, that is, towards the vertical.

Hence : The apparent altitudes of the stars are
increased by refraction.

In reality, the density of the atmosphere increases gradually
as we approach the Earth, instead of changing abruptly at

the planes AA', BB', .... Consequently, the ray, instead of

describing the polygonal path SahcO, describes a curved path.

I)ut the general effect is the same.

/T
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182. Law of Successive Refractions.—Let there be
any number of different media, separated by parallel planes

AA', BB', CC, HE' (Fig. 66), and let ^S^^k 07' represent

the path of a ray as refracted at the various surfaces. Then
it is a result of experiment that the final direction S'T
of the ray is parallel to what it would have been if the ray

had been refracted directly from the first into the last medium
without traversing the intervening media.

Thus, if a ray SO, drawn parallel to Sa, were to pass

directly from the first medium to the last by a single refrac-

tion at 0, its refracted direction would be the same as that

actually taken by the ray Sa, and would coincide Avith OT.

z
s'

^
/
T z

Fig. 66. Fig. 67.

183. The Pornmla for Astronomical Refraction.—
We shall now apply the above laws to determine the change-

in the apparent direction of a star produced by refraction.

Since the height of the atmosphere is only a small fi-action

of the Earth's radius, it is sufficient for most purposes-

of approximation to regard the Earth as flat, and the surfaces

of equal density in the atmosphere as parallel planes. With
this assumption, the effect of refraction is exactly the same

(§ 182) as if the rays were refracted directly into the lowest

stratum of the atmosphere, without traversing the intervening,

strata.
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Let OS (Fig. 67) be the true direction of fi star or otber

celestial body. Then, before reaching the atmosphere, the

rays from the star travel in the direction SO. Let their

direction after refraction be S'OT, then OS' is the

apparent direction in which the star will be seen, and the

angle SOS' is the apparent change in direction due to

refraction. The normal OZ points towards the zenith.

Hence ZOS is the star's true zenith distance, and ZOS'
or Z'OT is its apparent zenith distance, and the first and
third laws of refraction show that the star's apparent direction

is displaced towards the zenith.

Let ^ZOS' = z, ^ S' OS = u, and.'. A ZOS =zi-u;
and let fx be the index of refraction.

By the second law of refraction,

sin (z-\-u) = fi sin z.

sin z cos ti+ cos z sin w = ju sin 2.

IN'ow the refraction u is in general very small. Hence, if

u be measured in circular measure, we know by Trigonometry
that sin u = u, and cos u = 1 very approximately. Therefore
we have

sm z -I- w cos %= jx sm z
;

.-. w = (n— 1) tan ;?;.

Let U be the amount of refraction in circuhir measure
when the zenith distance is 45°. Putting z = 45°, we have

U^ fX-\.
.'. II = crtan z.

Thus the amount of refraction is proportional to
the tangent of the apparent zenith distance.

The last result does not depend on the fact that the refrac-

tion is measured in circular measure. Hence, if u", TJ" be
the numbers of seconds in w, Z7, we have

v!' = U" tan z.

The quantity U" is called the coefficient of refraction.
Since J7 is the circular measure of U", we have

TT

whence, if U" is known, fi can be found, and conversely.
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184. Observations on the preceding Pormnla.—In
the last formula u" represents the correction which must be
added to the apparent or observed zenith distance in order to

obtain the true zenith distance. By the first law, the azimuth
of a celestial body is unaltered by refraction.

Thus the time of transit of a star across the meridian, or

across any other vertical circle, is unaltered by refraction.

In using the transit circle, there will, therefore, be no cor-

rection for observations of right ascension, but in finding the
declination the observed meridian Z.D. will require to be
increased by U" tan z.

A star in the zenith is unaffected by refraction, and the
correction increases as the zenith distance increases. "When
a star is near the horizon, the formula u" = U" tan z fails,

since it makes w" = oo, when % — 90°. In this case u is no
longer a small angle, so that we are not justified in putting
sin u = w and cos w = 1 . But there is a more important reason

why the formula fails at low altitudes, namely, that the rays

of light have to traverse such a length of the Earth's atmo-
sphere that we can no longer regard the strata of equal density

as bounded by parallel planes. In this case, it is necessary to

take into account the roundness of the Earth in order to obtain

any approach to accurate results.

For zenith distances less than 75°, the formula is found to

give fairly satisfactory results ; for greater zenith distances it

makes the correction too large.

The coefiicient of refraction U" is found to be about 57",

when the height of the barometer is 29-6 inches and the
temperature is 50°. But the index of refraction depends on
the density of the air, and this again depends on the pressure

and temperature. Hence, where accurate corrections for

refraction are required, the height of the barometer and
thermometer must be read. Any want of uniformity in the

strata of equal density, or any uncertainty in determining

the temperature, will introduce a source of error ; hence it is

desirable that the corrections shall be as small as possible.

For this reason observations made near the zenith are always
the most reliable.
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*18o. Cassini's Formula.—The law of refraction was also investi-

gated by Dominique Cassini on the hypothesis that the atmosphere

is spherical but homogeneous throughout ; in this way he obtained

the approximate formula

u = (fi—1) tan z (1— n sec-z),

where n is the ratio of the height of the homogeneous atmosphere

to the radius of the Earth.

Cassini's formula may be proved as follows :—Let 80'0 be the

path of a ray of light fx-om a star 8.

By hypothesis this ray undergoes a

single refraction on entering the homo-
geneous atmosphere at 0'. Let be

the position of the observer, G the

centre of the Earth. Produce 00'

to S', CO to Z, and CO' to Z'. Let

u = jL 80S' (in circular measure),

z= IZOS', z = IZ'OS'.

Then, by § 183, if u is small, we have
u = ifx— l) tanz';

but here z' is not the apparent zenith

distance, so that we must express tan z'

in terms of tan z.

Draw CT perpendicular to O'O pro-

duced, and O'N perpendicular to COZ.
Then O'Ttanz' = TC = OTtanz;

tanz

tan z

O'T ^ ^ ^

CO
OT OT

= 1 +
ON SCO z

00 COS z
1 + P-^sec^z.

00
Fig. 68.

But ON is very approximately the height of the homogeneous
atmosphere OH, and is therefore = n . OC

;

1 + n sec- z tan z =
1 + n sec'- z

whence, by substituting in the formula, we have

/ , V tan z«= (^-1)7- ~
l-{ n sec z

= (1J.—I) tanz {l— nsec^z-t-Ti^sec'^z— n^sec^z, &c.}

Now n is very small ; we may therefore neglect its square and higher
powers; hence we obtain approximately

u= (/t—1) tanz (1 — w sec" z),

which is Cassini's formula.
If the value of n be properly chosen, Cassini's formula is found

to give very good results for all zenith distances uj) to 80^
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186. To determine the Coefficient of Refraction
from Meridian Observations.—Assuming the "tangent
law," w= C^tan Sj the coefficient of refraction C^ may be
found from observations of circumpolar stars as follows.

Let %i, Zgj the apparent zenith distances of a circumpolar

star, be observed at upper and lower culminations respectively.

Then the true zenith distances will be

Zj + CT'tan z^ and z^ + C^tan z^.

!N^ow, the observer's latitude is half the sum of the meri-

dian altitudes at the two culminations (§ 28), hence if ^ be
the latitude, we have

Z = i [(90°-z,-?7tan2i) + (90°-E2-^7'tanz2)},

or 90°— ? = 1(21 + 22) + i^(tanzi+ tan Zj) (i.).

Now let a second circumpolar star be observed. Let its

apparent zenith distances at upper and lower culminations be
z' and z". Then we obtain in like manner

90°-^=-|(z' + z") + |?^(tanz' + tanz") (ii.).

Eliminating I from (i.) and (ii.) by subtraction, we have

-IT— (zi + h)-{z'-\-z")

(tan Zj + tan z^j) — (tan z' -f tan z")'

Ii the two stars have the same declination, we shall have
Zj = z' and Zg = z", and the above formula will fail. Hence
it is important that the two observed stars should differ con-

siderably in declination; the best results are obtained by
selecting one star very near the pole (e.ff., the Pole Star) and
the other about 30° from the pole.

187. Alternative Method (Bradley's).— Instead of

using a second circumpolar star, Bradley observed the Sun's

apparent Z.D.'s at noon at the two solstices. Let these be -2^1,^2-

By § 38, since the true Z.D.'s are

Z^+ man Z, and Z^+ Z7tan Z^,

Z^ + Z7tan Z^ = I- i, Z^ + ?7tan Z^^l+i-, (e = obliquity.)

.-. 2l = Z, + Z^-\- ?7(tan Z, + tan ^2) (iii-)-

Eliminating I from (i.), (iii.)j "^c have

Z7(tan Zi+tan z^+ tan Z^+ tan 4) =180°- (z^ -\-z.^-\-Z, + Z,),

whence Cis found.
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188. Other Methods of finding the Refraction.—
Suppose that at a station on the Earth's equator, either a

star on the celestial equator, or the Sun at an equinox, is

observed during the day. Its diurnal path from east to west

passes through the zenith, and during the course of the

day its true zenith distance will change uniformly at the

rate of 15° per hour. Thus the true Z.D. at any time is

known. Let the apparent Z.D. be observed with an altazi-

muth. The difference between the observed and the calcu-

lated Z.D. is the displacement of the body due to refraction.

By this method we find the corrections for refraction at

different zenith distances without making any assumptions

regarding the law of refraction.

Except at stations on the Earth's equator, it is not possible

to observe the refraction at different zenith distances in such

a simple manner. Nevertheless, methods more or less similar

can be employed. Eor this purpose the zenith distances of a

known star are observed at different times. The true zenith

distance at the time of each observation can be calculated

from the known B.A. and declination (§ 26). Hence
the refraction for different zenith distances of the star

can be determined. This method is very useful for verifying

the law of refraction after the star's declination and the

observer's latitude have been found with tolerable accuracy.

Moreover, it can be employed to find the corrections for

refraction at low altitudes when the "tangent law" ceases

to give approximate results.

189. Tables of Mean Refraction.—From the results

of such observations tables of mean refraction have been con-

structed by Bessel,* and are now used universally. These
are calculated for temperature 50° and height of barometer
29-6 inches ; they give the refraction for every 5' of altitude

up to 10°, for larger intervals at altitudes between 10°

and 54°, and for every 1° at altitudes varying from 54° to
90°. Other tables give the '

' Correction for Mean Refraction, '

'

which must be added to or subtracted from the mean refrac-

tion given in the first table in allowing for differences in the

temperature and barometric pressure. The corrections for

temperature and pressure are applied separately.

* See any book of Mathematical Tables, such as Chambers's.
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190. Effects of Refraction on Rising and Setting.
At the horizon the mean refraction is about 33'; con-

sequently a celestial body appears to rise or set when it

it is 33' below the horizon. Thus, the effect of refraction is

to accelerate the time of rising, and to retard, by an equal
amount, the time of setting of a celestial body. In particular,

the Sun, whose angular diameter is 32', appears to bo
just above the horizon when it is really just below.

The acceleration in the time of rising due to refraction can

be investigated in exactly the same way as the acceleration

due to dip (§ 104). If u" denotes the refraction at the hori-

zon in seconds, d the declination, x the inclination to the
vertical of the direction in which the body rises, the accelera-

tion in the time of rising in seconds

= — u sec X sec a.
15 —•>

Taking the^orizontal refraction as 33', or 1980", and
putting a; = 0, «? = 0, we see that at the Earth's equator at

an equinox, the time of sunrise is accelerated by about
2m. 12s. owing to refraction. .

-— --

"When the Sun or Moon is near the horizon, it appears-

distorted into a somewhat oval shape. This effect is due ta

refraction. The whole disc is raised by refraction, but the

refraction increases as the altitude diminishes ; so that the

lower limb is raised more than the mjj^cr limb, and th_&

vertical diameter appears contracted! The horizontal dia-

meter is unaffected by refraction, since its two extremities

are simply raised. Hence, the disc appears somewhat flat-

tened or elliptical, instead of truly circular.

According to the tables of mean refraction, the refraction

on the horizon is 33', while at an altitude 30', the refraction

is only 28' 23", and at 35' it is 27' 41". Hence, taking the

Sun's or Moon's diameter as 32', the lower limb when on the

horizon is raised about 5' more than the upper. The con-

traction of the vertical diameter, therefore, amounts to 5',

i.e., about one-sixth of the diameter itself, so that the appa-

rent vertical and horizontal angular diameters are approxi-

mately in the ratio of 5 to 6.
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191. Illusory Variations in Size of Sun and Moon.
The Sun and Moon generally seem to look larger when
low clo^TL than when high up in the sky. This is, however,

merely a false impression formed by the observer, and is not

in accordance with measurements of the angular diameter

made with a micrometer. When near the horizon, the

eye is apt to estimate the size and distance of the Sun and

]\ioon by comparing them with the neighbouring terres-

trial objects (trees, hills, &c.). When the bodies are at

a considerable altitude no such comparison is possible, and a

different estimate of their size is instinctively formed.

192. Effect of Refraction on Dip, and Distance of
the Horizon.—Since refraction increases as we approach
the Earth, its effect is always to bend the path of a ray of

light into a curve which is concave downwards (Fig. 69).

Fig. 69.

Let Obe any point above the Earth's surface, and let T'
be the curved path of the ray of light which touches the Earth
at T' and passes through 0. Then OT' is the distance of

the visible horizon. Draw the straight tangent OT^ then
OT would be the distance of the visible horizon if there
were no refi-action ; hence, it is evident from the figure that

The Distance of the horizon is increased by
refraction.
Draw or", the tangent at to the curved path OT', then

or" is the apparent direction of the horizon. Hence, from
the figure we see that

The Dip of the horizon is diminished by refraction.
Both dip and distance are still approximately proportional

to the square root of the height of the observer.
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193. Effect of Hefractiou on Lunar Eclipses and
on Lunar Occultations.—In a total eclipse the Moon's
disc is never perfectly dark, but appears of a dull red colour.

This effect is due to refraction. The Earth comino^ between
the Sun and Moon prevents the Sun's direct rays from reach-
ing the Moon, but those rays which nearly graze the Earth's
surface are bent round by the refraction of the Earth's
atmosphere, and thus reach the Moon's disc.

Erom observing the "occultations" of stars when the
unilluminated portion of the Moon passes in front of them,
we are enabled to infer that the Moon does not possess an
atmosphere similar to that of our Earth. Eor the directions

of stars would be displaced by the refraction of such an
atmosphere just before disappearing behind the disc, and just

after the occultation ; and no such effect has been observed.

194. Twilight.—The phenomenon of twilight is also due
to the Earth's atmosphere, and is explained as follows :

—

After the Su]i has set, its rays still continue to fall on the

atmosphere above the Earth, and of the light thus received

a considerable portion is reflected or scattered in various

directions. This scattered light is what we call twilight,
and it illuminates the Earth for a considerable time after

sunset. Moreover, some of the scattered light is transmitted

to other particles of the atmosphere further away from the
Sun, and these reflect the rays a second time ; the result of

these second reflections is to further increase the duration of

twilight. Twilight is said to end when this scattered light has
entirely disappeared, or has, at least, become imperceptible.

From numerous observations, twilight is found to end when
the Sun is at a depth of about 18° below the horizon.

If the Sun does not desccnTTmore than 18° below the
horizon, there will be twilight all night.

Let I = latitude, d = Sun's declination, then it is easily

seen by a figure that the Sun's depth below the horizon
at midnight = 90°— rZ— Z.

This depth is less than 18°, if I > 72°-d.
But the greatest value of d is e, or nearly 23|° (mid-

summer). Hence, there is twilight all the night about
midsummer, at any place whose latitude I is not less than
72°-23i°, or48|°.
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EXAMPLES.—VI.

1. What would be the effect of refraction on terrestrial objects as

Been by a fish under water ?

2. For stars near the zenith show that the refraction is approxi-

mately proportional to the zenith distance, and that the number of

seconds in the refraction is equal to the number of degrees in the

zenith distance. (Take coefficient of refraction = 57''.)

3. From the summit of a mountain 2400 feet above the level of

the sea, it is just possible to see the summit of another, of height

3450 feet, at a distance of 143 miles. Find approximately the radius

of the Earth, assuming that the effect of refraction is to alter the

distance of the visible horizon in the ratio 12 : 13.

4. Trace the changes in the apparent declination of a star due to

refraction in the course of a day, at a place in latitude 45° N., the

actual declination being 50° N.

5. At Greenwich (latitude 51° 28' 31" N.) the star a Cygni was
observed to transit 6° 34' 57" south of the zenith. Find the

star's declination, employing the results of Question 2.

6. Prove that if the declination of a star observed off the meridian

is unaffected by refraction, the star culminates between the pole

and the zenith, and that the azimuth of the star from the north

is a maximum at the instant considered.

7. Show how the duration of twilight gives a measure of the
height of the atmosphere.

8. What is the lowest latitude in the arctic circle at which there
is no twilight at midwinter, and what is the corresponding distance
from the North Pole in miles ?
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EXAMINATION PAPEE.-YI.

1. What effect has refraction on the apparent position of a star ?

Show that the greater the altitude of the star the less it is displaced

by I'efraction, and that a star in the zenith is not displaced at all.

2. Prove (stating what optical laws are assumed) that, if the
Earth and the layers of the atmosphere be supposed flat, the

amount of refraction depends solely on the temperature and pressure

at the Earth's surface,

3. Prove the formula for refraction, r= (m— 1) tan z. Is this

formula universally applicable ? Give the reason for your answer.

4. Given that the optical coefl&cient of refraction of air (u)

= 1*0003, find the astronomical coefficient of refraction (U) in

seconds.

5. What is the refraction error ? How may Ave approximately
determine the correction for refinaction from observations made,
on the transits of circumpolar stars ?

6. Show how the constant of refraction (on the usual assumption
that the refraction is proportional to the tangent of the zenith

distance) might be determined by observing the two meridian alti-

tudes of a circumpolar star whose declination is known.

7. Assuming the tangent formulas for refraction, find the latitude

of a place at which the upper and lower meridian altitudes of a cir-

cumpolar star were 30° and 60° (^3 = 1'732), the coefficient of

refraction being 57".

8. Why is the Moon seen throughout a total eclipse ?

9. In the Scientific American, June 18, 1887, it was stated by the
editor that " The atmosphere by its refraction acts as a lens, pro-
ducing an apparent increase in the diameter (of the Sun and Moon)
near the horizon. When we consider that the atmosphere, as seen
from the surface of the globe, is a section of a vast lens whose radius

is the semi-diameter of the Earth, it is reasonable to assume a small
increase in the size of the objects seen through it, and a still greater
increase when seen in the obliquity of the horizon." Why is the
above statement altogether incorrect ?

10. Find the duration of twilight at the equator at an equinox.



CHAPTER VII.

THE DETERMINATION OF POSITION ON THE

EAETH.

Section I.

—

Instruments used in Navigation.

195. Among the different uses to whicli Astronomy lias

been put, perhaps the most important of all is its application

to finding the geographical latitude and longitude of any

place on the Earth from observations of celestial bodies. Such
observations may be made for either of the following purposes :

1. The determination of the exact latitude and longitude

of an observatory. These must be known accurately before

the coordinates of a star can be found or observations taken

at different observatories can be compared.

2. The construction of maps. The geographical latitude

and longitude of a place form a system of coordinates which
enable us to represent its exact position on a map.

3. The determination of the exact position of a ship in

mid-ocean. This is the most useful application of all ; on a

long sea voyage it is necessary to calculate daily the ship's

latitude and longitude correct to within a mile or so.

Now, owing to the motion and rocking of a ship, all the

astronomical instruments hitherto described are useless at

sea. The mariner is therefore obliged to have recourse to

others which are unaffected by the unsteadiness of the vessel.

The two instruments best fulfilling this condition are the

Sextant and the Chronometer, which we shall now describe.
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196. The Sextant.—The use of the Sextant is to measure
the angular distance between two objects by observing them
both simultaneously. It consists of a brass framework form-
ing a sector CDE graduated along the circular arc or limb
BE; the angle LCE is usually about 60° or rather more.
To the centre C of the arc is fixed an arm BI^ capable of

turning about C, and which carries the small mirror ^, called

the index glass. Another small mirror A, called the

horizon-glass, is fixed to the arm CJD, making an angle of

about 60° with BD. Of this mirror half the back is usually

silvered, the other half being transparent. Finally, at T is

fixed a telescope, pointed towards A in such a mamier as to

receive the rays of light from the mirror B after reflec-

tion at ^ (Figs. 70, 71).

Fig. 70.

On looking through the telescope T we shall see two sets

of imag?s, for objects at ZTwill be seen directly through the
unsilvered part of the mirror A, while objects at S will be
seen after two reflections at the mirrors B and A. The
miiTor is so near the object glass of the telescope as to be
quite out of focus

; hence these two sets of images will not
appear separate, but will overlap one another.
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The arm ^/carries at /an index mark or pointer by wMch
its position can be read off on the graduated scale DE. The
pointer should read zero when the mirrors A, B are parallel

(as in the position B'E, Fig. 70). When this is the case, the

two images of any very distant object ^will coincide. For
when a ray of light is reflected in succession at two parallel

mirrors, its final direction is parallel to its initial direction.*'

Hence if J?' (7^T represents the path of a ray of light from
the object R, as reflected in succession at B' and A, the por-

tion ^Tis parallel to R'C, and therefore coincides with the

ray HAT, by which the object is seen directly.

Now let it be required to find the angular distance between
the two objects ^and S. To do this, the mirror B is rotated

by means of the arm BI until the image of S (formed by
the two reflections) is seen to coincide with S. The angle

ECl, through which the mirror B has been turned from its

original position, is then half the required angular distance

between J?", 8.

For draw CN\ CK perpendicular to the two positions

B\ B of the mirror respectively. Since in reflection at a

plane mirror the angles of incidence and reflection are equal,

IN'CK^ACN' and .-. A ACII'=2 lACJST -,

also ^]VCS = AC]Sr and .-. zACS = 2zACJ^.

Hence /.ACS- iACS'= 2{/.ACN- l.ACN'\

i.e., £irC8 = 2. iN'CN
= 2 . z ECI;

or the angular distance between the objects is double the
angle JECI.

On the scale ED, every half-degree is marked as 1°. The
reading of the pointer / will therefore give double the angle
ECI, and this is the angular distance required.

The coincidence of the two images in the field of view of

the sextant will not be affected by any small displacement of

the instrument in its own plane. This peculiarity renders

the sextant particularly useful on board ship, where it is

impossible to hold the instrument perfectly steady.

* See Stewart's Text-Booh of Light, Chap. lY.

ASTRON. M
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197. Shades, Clamp and Tangent Screw, Heading
Glass, Vernier.

For viewing tlie Sun, the sextant is provided with
shades. These consist simply of plates of glass blackened

for the purpose of reducing the great intensity of the Sun's

rays. There are two sets of shades, G^ G, hinged to the

frame C£ in such positions that one set can be inserted

between A and C, to deaden the rays from S, while the other

set can be turned behind A to deaden the rays from S.
They are called respectively the *' index shades" and
*' horizon shades."

The arm or index bar BC is furnished with a clamp, by
means of which it can be clamped at any desired part of the

graduated limb LE. "When this has been done the arm can

be moved slowly by means of a tangent screw K, and in

this way can be adjusted with great precision.

The arc DUis usually graduated to divisions of 10',* and

is used by means of the lens M, called the " reading glass."

But the index bar also carries a scale V called a Vernier

(§ 198) which, sliding beside the scale on the limb, enables

us to read off observations to within 10".

* Of course these divisions ai^e only 5' apart, but in what follows

we shall speak of half-minutes as minutes.
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•198. The Vernier is a scale the distance between whose gradua-

tions is 10'— 10", i.e., 9' 50", or 10" less than the distance between

the graduations on the limb. These graduations are marked 0",

10", 20", &c., being measured in the same direction as on the limb.

For example, let us suppose the zero point on the vernier is between

the marks 26"" 20' and 26° 30' on the limb. We take the reading by
the limb as 26° 20'. We then look along the vernier scale until we
find that one of the marks on it exactly coincides xvith one of the marks

on the limb. Suppose that this is the 25th graduation from tne

zero point of the vernier, i.e., the point marked 4' 10". We add

this 4/ 10" to the 26° 20' read on the limb, and the sum gives the

correct reading, namely, 26° 24' 10".

The principle is as follows. Let us denote by P the mark which
coincides on the two scales.

Then from zero of vernier scale to P is 25 divisions of vernier,

i.e., an arc of 25 x (10' -10").

Also from 26° 20' of scale on limb to P is 25 divisions of limb, i.e.,

an arc of 25 x 10'.

.*. from 26° 20' on limb to of vernier, represents an arc of

25 X 10' -25 X (10'- 10") ; i.e., 25 x 10", or 4' 10".

Hence the zero mark of the vei'nier scale is at a distance 26° 20'

+ 4' 10" from the zero on the limb, and the reading is 26° 24' 10".t

199. The Errors of the Sextant need not be described in detail.

If the sextant does not read zero when the two mirrors are parallel,

it is said to have an Index Error, and a constant correction for

index error must be added to all readings made with the instrument.

There are also errors due to eccentricity or want of coincidence

between the centre about which the index bar turns, and the

centre of the limb, errors of graduation, &c.

200. To determine the Index Error of the Sextant.—In all goou
sextants the graduated limb is continued backwards for about 5°

behind the zero point. This portion of the limb is called the "arc
of excess," and is used for finding the index error, as follows. The
Sun or full Moon is observed ; the two images of its disc are

"brought into contact. Let e be the index-error, r the sextant reading,

D the angular diameter of the disc, then we have evidently D = r + e.

2Tow let the index bar be moved along the arc of excess until the
images again touch, the image which was before uppermost being
undermost. If the reading on the arc of excess be — r', we have
now —D = — r' + e, or D = /— e.

Hence, 2e= r'^r.

t The simpler forms of mercurial barometer are provided with a
vernier by means of which the height of the mercury is read off to
the nearest hundredth of an inch. The student will find it of great
assistance to carefully examine the vernier in such an instrument.
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201. To take altitudes at Sea "by the Sextant.—
The principal use of the sextant is for finding altitudes.

Now the altitude of a star is its distance from the nearest

point of the celestial horizon. To find this, the sextant is so

adjusted that the reflected image of the star appears to lie on

the offing or visible horizon ; when the plane of the sextant

is slightly turned, the image of the star should just graze the

horizon without going below it. The sextant reading then
gives the star's angular distance from the nearest point of the

"offing." Subtract the dip of the horizon and the correc-

tion for refraction, both of which are given in books of

mathematical tables. The star's true altitude is thus

obtained.

202. To take the Altitude of the Sun or Moon.—
In observing the Sun's altitude, the " index " shades must be
turned into position between the two mirrors, and the instru-

ment adjusted so that the Sun's lower limb appears just to

graze the horizon. The reading of the sextant, when
corrected for dip and refraction, gives the altitude of the

Sun's lower limb. Add the Sun's angular semi-diameter,

which is given in the I^autical Almanack ; the altitude of the

Sun's centre is then obtained.

Both the Sun's altitude and its angular diameter may be
obtained by observing the altitudes of the upper and lower
limbs. The difference of the two corrected readings gives the

Sun's angular diameter, and half the sum of the readings

gives the altitude of the Sun's centre.

If this method is used, allowance must be made for the
change in the Sun's altitude between the observations. Tor
this purpose, three observations must be made. Pirst take

the altitude of the Sun's lower limb, then of the upper limb,

and lastly, again of the lower limb. Also note the time

of each observation. The difference between the first aud
third readings determines the Sun's motion in altitude ; from
this, by a simple proportion, the change in altitude betweeu
the first and second observations is found, and thus the alti-

tude of the lower limb at the second observation is known.

We can now find the Sun's angular diameter, and the altitude

of its centre at the second observation.
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Let 2^1 = time of 1st observation, when a — alt. of lower limb ;

^2 = time of 2nd observation, when h = alt. of upper limb ;

t^ = time of 3rd observation, when a' = alt. of lower limb
;

Then in time t^—t^, the alt. of lower limb increases a— a.

.-. in time t^— t^ it increases (a— a) X f
——.

Hence if a^ denote the alt. of lower limb at second observation,

a, = a-h{a -a) f—j-
= ^-^

—

^^. V—— •

This finds a.2^ and we then have
Sun's angular diameter = h— a^.

Alt. of Sun's centre at second observation=—(3 + aJj).

Jj

In taking the altitude of the Moon, the altitude of the

illuminated limb must be observed, and the angular semi-

diameter, as given in the "Nautical Almanac," must be

added or subtracted, according as the lower or upper limb is

illuminated.

203. Artificial Horizon for Land Observations.—
Owing to the absence of a well-defined offing on land, an
artificial horizon must be used. This is simply a shallow

dish of mercury, protected in some manner from the disturbing

effect of the wind. The sextant is used to observe the

angular distance between a star and its image as reflected in

the mercury. Half this angular distance is the star's apparent
altitude ; correcting this for refraction, the true altitude is

obtained {cf. § 65).

As the limb of the sextant is generally an arc of not more
than 70°, the instrument will not measure angular distances

of more than 140°, and it can, therefore, only be used with an
artificial horizon for altitudes of under 70°. Eor greater
altitudes the zenith sector must be used.

At sea, where altitudes are measured from the offing, this

objection does not apply. On account of the motion of the
vessel an artificial horizon is useless ; hence, no observations
can be taken when the offing is ill- defined, which fre-

quently happens, especially at night. The mariner is,

for this reason, chiefly dependent upon observations of the
Sun and Moon, and such stars of the first magnitude, or
planets, as are visible about dusk.
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204. The Chronometer is the form of timepiece used on
board ship, and in all observations in which clocks are un-
available, owing to their want of portability. In principle,

the chronometer is simply a large and very accurately con-

structed watch ; its rate of motion being controlled, not by a

pendulum, but by a balance-wheel, which oscillates to and
fro under the influence of a steel hair-spring. In order that

the chronometer may go at a uniform rate, the balance-wheel

is constructed in such a manner that its time of oscillation is

unaffected by changes of temperature. If the wheel were
made of one continuous piece of metal, any increase of tem-
perature would cause the whole to expand, and the couple

exerted by the spring would not reverse its motion so readily,

eo that the time of oscillation would be increased. To

Fig. 72.

obviate this, the rim of the wheel is made in several (generally

three) disconnected arcs, each being formed of steel within

and of brass without. When the temperature rises, the sup-

porting arms or spokes expand, pushing the arcs outward

;

but in each arc the outer half of brass expands more than the

inner half of steel, and this causes it to curl inwards,

bringing the extremity actually nearer the centre tban it was
before. The arcs carry small screw weights, and by adjusting

these nearer to or further from the supports, the compensa-

tion can be arranged with great accuracy.*

* The student who has read a little Eigid Dynamics will notice

that the compensation must be so arranged that the " moment of

inertia " of the balance-wheel is unaffected by the temperature.
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Anotlier peculiarity of the chronometer consists in the

''detached escapement." The action of the main spring,

while keeping up the oscillations, must not affect their

periodic time, ancl to secure this condition the escapement is

so arranged that the balance wheel is only acted on during a

very small portion of each oscillation.

The chronometer is usually suspended in a framework, in

such a manner that when the vessel rolls the instrument

always swings into a horizontal position ; the 'framework
also serves to protect it from violent shaking.

205. Error and Rate of the Chronometer.—A chrono-

meter is constructed to keep Greenwich mean solar time. As
in the case of the astronomical clock, the amount that a chrono-

meter is slow when it indicates noon is called its error, and
the amount which it loses in 24 hours is called its rate. If

the chronometer is fast, the error is negative ; if it gains, the

rate is negative.

The essential qualification of a good chronometer is that

its rate must he quite uniform. It is not necessary that the

rate shall be %ero^ provided that its amount is known, since

a correction can easily be applied to obtain the correct

time from the chronometer reading. During sea voyages
extending over a large number of days, the correction for rate

may become considerable, and there is no very satisfactory

method of finding the chronometer error at sea ; for this

reason the instrument is rated, «.e., has its rate determined
by comparisons with a standard clock, whenever the ship is in

port. Moreover, many ships carry several chronometers, which
serve to check each other ; ifthe rate of one shouldvary slightly,

this change would be detected by comparison with the others.

Many of the best chronometers used in the Navy and
elsewhere are tested at the Greenwich Observatory. They
are there kept in a special room, in which they can be
subjected to artificial variations of temperature, with a view
of ascertaining whether the compensation for temperature is

perfect or not. The chronometers are compared daily with
the standard clock. The process of rating is performed by
two assistants who have acquired the power of counting the
beats of the clock while reading off the errors of one chrono-
meter . after another. In this manner, about a hundred
clironometers can be rated in half an hour.
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Section II.

—

Finding the Latitude ly Ohservation.

206. The methods of finding latitude may be conveniently

classified as follows :

—

A. Meridian Observations.

(1) By a single meridian altitude of the Sun or a known
star.

(2) By meridian altitudes of two stars, one north and one

south of the zenith, taken with the sextant.

(3) By two observations of a circumpolar star.

B. Observations not made on the Meridian.

(" Ex-meridian Observations.^^)

(4) By a single observed altitude, the local time being known.
(4a) By " circum-meridian altitudes."

(4b) By observing the altitude of the Pole Star.

(5) By observations of two altitudes.

(6) By the Prime Vertical instrument.

"We now proceed to examine the various methods in detail,

but it must be premised that the " ex-meridian " methods
cannot be thoroughly explained without spherical trigo-

nometry.

5 Z__x

207. Latitude by a Single Meridian Altitude.—Let

S (Pig. 73) represent the position of the Sun or a star of

known declination when southing.

Let the meridian altitude sS be observed, and let it be = «

;

also let z be the meridian Z.D. ZS, so that z = 90° -a. Let

(?be the known ^. decl. QS, and ^the required iST. latitude QZ.
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Then in the figure we have

QZ= QS+ SZ',

,\ lz=il+ Z

which determines l.

If the declination he south, d must he taken negative ; if

the hody transits between the zenith and the north pole, z must
he taken negative ; and I will he negative if the latitude is

«outh. The first formula will then he applicable in all cases.

In order that the second formula may be universally

iipplicable, a must be the angular distance from the south

point of the horizon. If the star transits north of the zenith,

as at X, and a^ denote the altitude nx, the angular distance sx

is a = 180°— rt^i.

Therefore lz=d-ha^ - 90°.

In the case of a circumpolar star x' observed at inferior

culmination, the declination d = 90° ~ Px' — 180°— Qx'

.

Hence, Q«' = 180°— <?, and the formula gives

1= 180°-<?+2= 180°-^-Zi=: 90°-(?+«i,

where %^ is the north zenith distance and = — z.

In numerical calculations the student will find it advisable,

in every case, to draw a suitable diagram, and not to rely on
mere formulse.

208. In finding the Latitude at Sea, the Sun's meri-
•dian altitude is found by means of the sextant in the following

manner :—Begin to observe the altitude of either limb
about ten minutes before apparent noon, and as the Sun's
altitude continues to increase, continue to move the index bar
of the sextant with the tangent screw, so that the image of

the Sun continues to touch the visible horizon. When the
Sun has passed the meridian, and its altitude begins to

•decrease, the adjustment of the sextant must not he reversed^

but should be stopped. The reading then gives the greatest

•altitude of the observed limb.
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Owing to the yariation in the Sun's declination, the greatest

altitude is, in general, slightly greater than the meridian
altitude, but the difference is almost insensible. A correc-

tion may be applied if desired. Prom the sextant reading-

subtract the corrections for dip and refraction, also add or
subtract the Sun's semi-diameter according as the lower or
upper limb is observed ; thus the Sun's meridian altitude is

found.

The Sun's declination is then to be found from the I^autical

Almanack, which gives the declination at Greenwich noon,

and its hourly rate of variation. To apply the latter correc-

tion, the Greenwich time of the observation must be known
roughly \)j the ship's chronometer. The declination at tha
time of the observed transit can then be accurately found.

The latitude is now given by the formula.

209. In finding the latitude on laud, by this method^
the meridian altitude of a fixed star can be observed with a
sextant furnished with an artificial horizon, the declination

of the star be ing found from astronomical tables.

If the Sun be observed, a dark glass cap may be fitted on
to the telescope, instead of using the shades. The altitude-

of the Sun's centre might be found by adjusting the two
images to coincide, but it is much more easy to adjust the

images to touch, and thus to find the altitude of the lower or

upper limb, preferably the former. Add or subtract the Sun's

Bemi-diamcter according to circumstances ; thus the meridian

altitude of the centre is found.

The meridian Z.D. of a star may also be observed by the

zenith sector (§ 112). By selecting a star which transits

near the zenith, the liability of error in the correction for

refraction may be greatly reduced.

210. In a Fixed Observatory, the meridian altitude is-

found by the Transit Circle. The best determinations of the

latitude are those resulting from a large series of observations

of different stars, extending over a considerable number of

years ; from such observations the latitude of the transit

circle can be found to within a small fraction of a second^

representing a distance of only a few yards.



THE DETEKMIjS-ATION OF POSITION ON THE EAETH. 165

Example.

On April 11, 1891, in longitude 80° 12' E. (ronglily) with an
artificial hoi'izon, the meridian reading of the sextant for the Sun's
lower limb was observed to be 107° 59' 48". Barometer 307 inches,

thermometer 72°. Find the latitude, having given the following
data :

—

O I II

0*8 (Sun's) decl. at Gi-eenwich noon, Ap. 11 = 8 19 4 \ From
Hourly variation of decl = 55"1 h Nautical
©'s semi-diameter = 15 59 j Almanack.

Mean refraction at altitude 54°

Correction for barometer

„ for thermometer ...

41
+ 1
-2

From
Tables.

The calculation is best arranged as follows
;

(i.) Double observed alt. of lower limb = 107 59 48
.'. observed alt

Corrected refraction at this alt.

(which is nearly 54°)

.

.*. true alt. of lower limb ...

Ang. semi-diam

Merid. alt. O's centre
Subtract from

Merid. Z.D. of O's centre ... .

= 53 59 54

= 40(-)

= 53 59 14
= 15 59 ( + )

= 54 15 13

90

= 35 44 47 S. (i.)

(ii.) Long. 8° 12' E. in time
.". time of observation ...

M. S.

32 48
32 48 hefore Greenwich noon.

O's decl. at Greenwich noon April 11
Variation in 30m. before noon ...

„ 2m. 48s. (about) ...

.*. O's decl. at time of observation ...

Add O's merid. Z.D. from (i.)

Required north latitude

= 8 19 4 N. (increasing).

27(-)
= 3(-)

= 8 18 34 lY.

= 35 44 47 S.

= 44° 3' 21'
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211. To find tlie latitude by sextant observations
of tlie meridian altitudes of two stars which culmi-
nate on opposite sides of the zenith.—This is really only

a modification of tlie first method. Two stars of known
declination are selected which culminate, one south and the

other north of the zenith, at very nearly the same altitude.

The latitude is calculated independently from observations of

the meridian altitudes of either star, and the mean of the two
results is taken as the correct latitude.

This method possesses the following advantages :

—

1st. There is no need to correct the observed altitudes for

dip of the horizon

;

2nd. The result is unaffected by any constant instrumental

errors (index error, &c.) which affect both altitudes equally;

3rd. The correction for refraction is reduced to a minimum,
or even entirely eliminated, if the altitudes are almost equal.

Por let d^, <?2 ^^ the north declinations of the two stars
;

Zj (south) and z^ (north) their true meridian Z.D.'s

;

«j and ^2 their observed meridian altitudes

;

Wj and Wj the corrections for refraction;

D the dip of the horizon
;

e the correction for constant instrumental errors.

For true meridian altitudes of the two stars we have

90°— Zi = ai-\-e—I>-u^, 90°— z^ = a.2-\-e—J)—U2.

The two observations give, therefore, for the latitude (by § 204)

I = ^j+Zj = ^^ + 90°-^!— e+ i)+ Wi,

l=d^-z^ = d2— 90°+ a^+ e—D-u^.
Therefore, taking the mean of the two results,

^ = K^i + <^2 +^1 -Zj) = ^{^1 + ^2 + (<J2—
«5i) -K -«^i)}

»

a result involving no corrections beyond the difference of

refractions, u^—u^.

Moreover, if the altitudes a^ and a^ are greater than 45°,

and their difference (^^j— «5i)
is less than a degree, then

^ (^2— Wi) is < 1", and therefore the refi'action correction

may be entirely neglected.



THE DETEEMINATION OP POSITION ON THE EAETH. 167

212. Latitude by Circumpolars.—This method has

already been mentioned in § 28, but we will here repeat

the investigation for convenience.

Let X, x' (rig. 74) represent the positions of a circumpolai

star at its upper and lower transits. Let its meridian

altitudes nx and nx' be observed, and let their corrected

values be a^ and a^ respectively. Since

Px = star's N.P.D. = FJ,

.*. nP =.\{nx-\-na^),

or i = ^(ai+ao).

In this formula no knowledge of the star's declination is-

required, but the observed altitudes require to be corrected

for refi-action, dip, &c.

The circumpolar method is most useful in determining the
latitude of a fixed observatory, because this must be done
before the declination of any star can be determined. Th&
transit circle is used to determine the meridian altitudes at

the two culminations.

By observing two or more circumpolars the correction for

refraction may be found, as in § 186, and the observed alti-

tudes may then be corrected for refraction.
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As the declinations of a large number of stars are given

in astronomical tables, the circumpolar method is never
used at sea. It would possess no advantage, and would have
the disadvantage of requiring a correction for the change in

the ship's place between the two culminations.

Examples.

1. The observed meridian altitude of $ Ceti (decl. 18° 36' 44-5" S.)

IS 36° 43' 12", and that of a Vrsse Minoris (decl. 88° 41' 53-1" N.) at its

upper culmination is 36° 9' 57", both altitudes being measured from
-the " oflBng," and the dip being unknown. Find the latitude, given

Refraction at alt. 36° = 1' 20"
; at alt. 37° = 1' 17".

This is an example of the method of § 211. The calculation stands
ihus :

—

j8 Ceti (south). a Ursae Minoris (north).
36° 43' 12" Observed altitudes 36° 9' 57"

— 1 18 Ilefraction corrections — 1 19'5

Corrected Altitudes36 41 54
90

+ 53 18 6 s.

-18 36 44-.";iS.

36
90

8 37-5

-53
+ 88

51

41

22-5 N.
531 N.

Zenith Distances
Declinations

34 41 21-5 N. Calculated Latitudes 34 50 306 N.

•Thus, lat. by star north of zenith = 34° 50' 30-6" N.
„ south „ = 34 41 21-5 N.

2)69 31 52-1

Mean latitude = 34° 45' 56" N.

Here, owing to dip, one of the calculated latitudes is 4' 34"6" too
great, and the other is 4' 34*5" too small, but the mean of the two
results is the correct latitude.

2. The observed altitudes of $ Ursss Minoris at lower and upper
•culmination are 29° 58' 15" and 60° 45' 3". Find approximately the
latitude, assuming the coefficient of refraction to be 57".

By the " tangent formula," refraction at altitude 30" (approx.)

= 57" tan 60° = 57" x ^/3 = 57" x 1-732 = 1' 39".

Refraction at alt. 60° = 57" tan 30° = 57" x ^3/3 = 1' 39"-^3 = 33".

Hence truealt. atlower culmination = 29° 58' 15"- 1' 39" = 29° 56' 36"

» '» „ upper „ =60 45 3- 33"= 60 44 30

2) 90 41 6

Required North Latitude= 45° 20' 33"
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LATITUDE BY EX-MERIDIAN OBSERYATIONS.

213. To find the latitude by a single altitude, the
local time being known.—If the local time be known, a

single altitude of the Sun or a known star is sufficient to

determine the latitude.

Por let S be the observed body, ^the zenith, F the pole.f

Then in the spherical triangle PZS, the known local time

enables us to find the hour angle ZFS. For, if the Sun be

observed, its hour angle ZFS
= 15 X (apparent local time)

= 15 X (mean local time—equation of time)
;

and if a star be observed, its honr angle ZFS
= 15 X (local sidereal time— star's R.A.).

Also ZS = observed body's Z.D.= 90°- (observed altitude)

;

FS= „ „ N.P.D. = 90° - (known deck).

Hence, ZS, FS, and the angle ZFS are known. These
data completely fix the spherical triangle ZFS, and from
them ZF can be found by Spherical Trigonometry.

Hence the latitude is found, being = 90°—ZF.

*214. By Circum-meridian Altitudes.—This is a par-

ticular case of the method last described. In attempting to

find the latitude by meridian observations, it may happen
that passing clouds prevent the body from being obser\ed at

the instant of transit. In this case the latitude can be found
from the observed altitude when very near the meridian.

The hour angle ZFS is then small, and the difference

I)etween the observed and meridian altitudes is also

small. This difference is called the "Ileduction," and is

found by approximate methods.

The best results are obtained by taking a number of alti-

tudes of the body before and after passing the meridian.

*215. By a Single Altitude of the Pole Star.—The
^.P.D. of Folaris is only about 1° 16-^. Hence, if its alti-

tude is observed at any time, the latitude may be found by
adding to, or subtracting from, this altitude, a small, correc-

tion, never greater than about 1° 16|'.

+ The student will have no difficulty in illustrating §§213-216
with diagrams. For § 213, Fig 75 may bo copied.
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This correction consists of three parts, which are given by
three tables in the Nautical Almanack. The first two cor-

rections depend on the sidereal time, and on the observed
altitude ; the third is due to variations in the R.A. and
I^r.P.D. of Polaris, due to precession (§ 141), etc.

*216. Latitude by observation of Two Altitudes.—By observing
the altitudes of two known stars, both the latitude and the local
sidereal time can be found.

The same method can be employed to determine the latitude by
two observations of the Sun's altitude, separated by a known interval
of time.

The necessary calculations are very complicated, involving
Spherical Trigonometry, and they cannot be materially simplified

even by the use of tables.

A very useful geometrical construction, enabling us, from the two
observed altitudes, to indicate the exact position of a ship on a
globe without calculation, will be detailed in Section VI. of this

chapter.

217. Latitude by the Prime Vertical Instrument.
—The latitude of a fixed observatory may be found by means
of an instrument similar to the Transit Circle, but whose
telescope turns in the plane of the prime vertical instead of

the meridian. A star will cross the middle wire of such an
instrument when its direction is either due east or west

;

the times of the two transits are observed. Let S, S' be the
positions of a known star at its eastern and western transits,

Z the zenith, P the pole. The sidereal interval between the
two transits determines the angle SPS', and this is evidently

twice the angle ZPS. Hence Z ZPS is known. Also PS, the
star's N.P.D., is known, and PZS is a right angle. Therefore,

the spherical triangle ZPS is completely determined, and the
colatitude ZP can be found.

The times of the transits are unaffected by refraction, and
this fact constitutes the principal advantage of the method.
The observations may be performed by an altazimuth, whose

horizontal circle is clamped so that the telescope moves in

the prime vertical. The instrument must be so adjusted that

the interval of time between the first transit and culmination

is equal to the interval between culmination and the second

transit. The culmination must be observed with a Transit

Circle.
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Section III,

—

To find the Local Time hj Observation.

218. In determining the longitude of a place on the Earth,

the first step is to find the local time by observations of the
hour angle of a known celestial body. If the time indicated

by a chronometer or clock at the instant of observation be
also noted, we shall find the difference between the true local

time and the indicated time. This difference is the error of

the clock on local time.

In § 167 we described one instrument for observing local

time—the Sun-dial. This cannot, however, be used except
for very rough observations, as the boundary of the shadow
cast by the style is not sufficiently well defined to admit of accu-

rate measurements. Moreover the Sun-dial is not portable.

Por this reason the local time is usually found by one or

other of the following methods :

—

1st. By meridian observations.

2nd. Ey equal altitudes.

3rd. By a single altitude, the latitude being known.
4th. By observation of two altitudes.

219. Local Time by Meridian Observations.—In a
fixed observatory, the local sidereal time is found by means of

the Transit Circle, as explained in §§ 24, 54. The transit of

a known star is observed ; the local sidereal time of transit is

equal to the star's E.A., and is therefore known.
Or by observing the transit of the Sun's centre, the time

of apparent local noon may be found. The equation of time
is the mean time of apparent noon, and is given in the
" Nautical Almanack "

; hence the local mean time is found.

These methods are not available at sea, as the Transit

Circle cannot be used. It might be thought that we could
use a sextant to ascertain the instant when the body's altitude

is greatest, but, for a short interval before and after the transit,

the altitude remains very nearly constant ; it is therefore

impossible to tell with any degree of accuracy when it is

a maximum.
On the other hand, a slight error in the time of observation

does not affect the altitude perceptibly, so that the meridian
altitude may be observed with great accui'acy, as in § 208.

ASTEON. N
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220. Method of Equal Altitudes.—When it is required

to find the local time from observations taken with a sextant,

the simplest method is as follows :—Observe the altitude of

any celestial body some time before it culminates. After the

body has passed the meridian, observe the instant of time

when its altitude is again the same as it was at the first

observation. Half the sum of the times of the two observa-

tions gives the time of transit.

Fig. 75.

For let 8, S' be the two observed positions of the body, Z
the zenith, and F the pole.

The altitudes of SX, S'X' being equal, the zenith distances

are equal

;

.-. zs = zs\
Also FS = FS\

and the spherical triangles ZFS, ZFS' have ZF in commsn.

.-. zSFZ= A ZFS'.

IS^ow let t^ and t^ be the times of the two observations,

i the time of transit.

Then t—f^ is the time taken to describe the angle SFZ;
t^ t ,, ,, ,, ft ZFa

.

Since the two angles are equal,

.-. t-t, = t,-t',

From the time of transit the local time can be found, as in

the last article.
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221. In observing the Equal Altitudes with a
Sextant, the following method is used :—At the first ob-

servation clamp the index bar at an altitude slightly greater

than that of the body. Continue to observe the body as it

rises, till its image is in contact with the horizon, and note

.the instant of time (t^) at which this happens. Keep the

index bar clamped until the second observation ; commence
observing the body again just before it has reached the same
altitude again, and note the instant of time (^2) wl^en its

image is again in contact with the horizon. The two observed

times (^1, ^2) are the times of equal altitude.

If an artificial horizon he used, we must observe the two
instants of time (^1, ^2) when the two images are in contact.

222. Equation of Equal Altitudes.—If the Sun be the

•observed body, ,its declination will, in general, change
slightly between the two observations ; hence FS will not bo
exactly equal to FS', and the angles SPZ, ZFS' will not be
quite equal. For this reason a small correction must be
applied, in order to allow for the effect of the change of

declination. This correction is called the Equation of
Equal Altitudes, and may be found from tables which
have been calculated for the purpose.

At Sea allowance must also be made for the change of

position of the ship between the two observations, and thie

•correction is also effected by means of tables.

223. The method of Equal Altitudes possesses the
following advantages :

—

1st. The results are unaffected by errors of graduation of

the sextant, for the actual readings are not required.

2nd. The semi-diameter of the observed body need not be
known.

3rd. The observed altitudes, being equal, are equally affected

by refraction, and no refraction correction need therefore be
made.

4th. The dip of the horizon need not be known, provided

that it is the same at both observations.
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224. With a Gnomon, the time of apparent noon can be
roughly found in a very simple manner. A rod is fixed

vertically in a horizontal plane, and on the latter are

drawn several circles, concentric with the base of the rod.

Let the times be observed, before and after noon, when
the extremity of the shadow cast by the rod just touches
one of these circles. At these two instants the Sun's alti-

tudes are, of course, equal, and therefore the time of apparent
noon is the arithmetical mean between the observed times.

Example.—The shadow of a vertical stick at Land's End (long.
5° 40' W.) is observed to have the same length at 9h. 27m. a.m. and
3h. Im. 40s. P.M., Greenwich time. Find the equation of time on
the day of observation.

Greenwich mean time of local apparent noon is

i { 9h. 27m. Os. + 3h. Im. 40s.- 12h. } = 14m. 203.

But, by § 96, Greenwich mean time of local mean noon = 22m. 40s.
.". Eqn. of time = local mean time of apparent noon = — 8m. 20s.

*225. The Latitude may also be found by the method of

equal altitudes, though the calculations require Spherical

Trigonometry. Por this purpose, the altitude at either

observation must be read off on the sextant, and corrected for

refraction, dip, &c. The zenith distance SZ is therefore

known. The angle SPZ is also known, being half the angle

described in the interval t^ — t^^ and FS, being the comple-

ment of the declination, is also known. The spherical triangle

ZPS is therefore completely determined, and ZP^ which is

the complement of the latitude, can be found.

226. Local Time by a Single Altitude, the Latitude
being known.—This is the converse of the method for

finding the latitude described in § 213. If the altitude of a,

known body, B, be observed in known latitude, we know
ZSj SP, PZ, which are the complements of the observed

altitude, the declination, and the latitude respectively ; hence

the hour angle SPZ, and therefore also the local time, may
be found.

*227. Local Time by Two Altitudes.—The method of § 21&
determines, not only the latitude, but also the hour angles of tha
bodies at the two observations, and these determine the local time.

The method of equal altitudes is in reality only a particular caso
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Section IY.—Determination of the Meridian Line.

228. Before setting up a transit circle or equatorial in a

fixed observatory, it is necessary to know with considerable

accuracy tbe direction of the meridian line, i.e.^ the line

joining the north and south points of the horizon. At sea,

the directions of the cardinal points are determined by a

mariner's compass ; but here, too, it is of great use, on long

voyages, to determine the variation of the compass, or

tlic deviation of the magnetic needle from the meridian line.

This deviation is different at different parts of the Earth.

There are three ways of finding the meridian line : first,

by two observations of a celestial body at equal alti-

tudes ; second, by a single observation of the azimuth ; third,

by one or more observations of the Pole Star.

229. By Equal Altitudes.—When a body has equal

altitudes before and after culmination, the corresponding

azimuths are equal and oppo-

site.

For if 8, S' denote the two
positions of the body, the tri-

angles ZP8, ZP8' are equal in

all respects

;

.-. /.FZS = ^PZ8' and

.-. AsZS=/isZS'.

230. At Sea, the Sun's azi-

muth, or compass bearing, may
be observed when rising and
when setting; the meridian

line bisects the angle between the two directions (§ 29).

231. On Land, we may observe the directions of the

shadow cast by a vertical rod on a horizontal plane when it

has equal lengths ; for this purpose we mark the points at

which the end of the shadow just touches a circle concentric

with the base of the rod {cf. § 224). Bisecting the angle

between the two directions, the north andsouthpoints are found.

If greater accuracy is required, an altazimuth may be used.

The readings of the horizontal circle are taken when the

altitudes of a star are equal ; the meridian reading is the
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arithmetical mean of the two readings. While observing the

equal altitudes, the vertical circle must he kept clamped.

*232. By a Single Observation.—If the direction of

the vertical plane through a single celestial body S he-

observed at any instant, the direction of the meridian line

may be found by means of Spherical Trigonometry.

Eor if any three parts of the triangle ZFS are known, the

triangle is completely determined, and the angle FZS can be

found.

The azimuth sZS =: IS0°—FZS, and is then known

;

hence the meridian line ZS is found.

I^ow the sides FS, ZS, ZF are the complements of the

declination, the altitude, and the latitude ; and the hour angle

ZFS is known, if the local time be known. Any three of

these data are sufficient to determine the angle FZS.
Thus, for example, the Sun's direction, either at sunrise or

at sunset, determines the meridian line, if either the local

time or the latitude is known.

233. By Observations of the Pole Star.—The direc-

tion of the meridian may be very accurately determined by
observations of the star Folaris. If the azimuthal readings of

this star be observed at the two instants when it is

furthest from the meridian, east and west, respectively,

the reading for the meridian is half their sum. The
observations maybe made with an altazimuth. The azimuth

at either observation is a maximum, and it remains very

nearly constant for a short interval before and after attaining

its maximum. Hence, a slight error in the time of observa-

tion will not perceptibly affect the azimuth. The same

method is applicable to any star which culminates between

the pole and the zenith.

The most accurate method is, however, that employed in

finding the deviation error of the Transit Circle (§ 59).

If the telescope always moves in the plane of the meridian,

the interval from upper to lower culmination, and the

interval from lower to upper culmination, will both be

exactly twelve sidereal hours. If not, the small amount by
which the vertical plane swept out by the telescope is east or

west of the meridian, can be found by obsei*ving the amounts

by which the two intervals are greater and less than 12h.
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Section Y.—Longitude ly Olservation,

234. In Section III. of tlie present chapter we showed
how the local time can be found by observing the celestial

bodies. "When this has been done, the longitude of the place

of observation may be found by comparing the observed local

time with the corresponding Greenwich time.

For in § 96 we showed that if the longitude of a place west
of Greenwich be Z°, then

(Greenwich time)— (local time) = -^L h. = 4Z m.

;

whence, knowing the difference of the two times, L may be

found.

The methods of finding Greenwich mean time, and hence

longitude, may be classified as follows :

—

A. Methods available at Sea.

(1) By the chronometer.

(2) By the method of lunar distances.

(3) By celestial signals.

B. Methods suitable for Land Observations,

(4) By repeated transmission of chronometers.

(5) By the chronograph.

(6) By terrestrial signals.

(7) By Moon culminating stars or by the Moon's meridian
altitude.

235. Longitude by the Chronometer.—By reading

the chronometer used on board ship, and making the necessary

corrections for error and rate, the Greenwich mean time at

any instant may be found. If, then, the local mean time is

determined by observing the Sun, or one of the other

celestial bodies, and the observations are timed by the chrono-

meter, the difference between the local and Greenwich mean
times will be found, and this determines the ship's longitude

measured from Greenwich.

Example 1. — At apparent noon a chronometer indicates
19h. 33m. 25s., Greenwich mean time, and the equation of time is

— 2m. Is. To find the longitude.
Here the local mean time is —2m. Is.

.'. Greenwich mean time— local mean time ... = 19h. 35m. 26s.

Mult, by 15, we have long. W. of Greenwich ... = 293° 51' 30"

or sub. from 360°, long. E. of Greenwich =66° 8' 30"
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Example 2.—Find the longitude, from the following data ;

—

Sun's computedhourangle = 75°E. Timeby chronometer= 23h.7m.31s.

Equation of time= + 3m. 55s. Correction for errorand rate,—Im.lSa.

(i.) Here 0's hour angle in time = 5h. before noon.
.". apparent local time = 19h. Om. Os.

Equation of time = 3 55

= 23h. 7n
= -1

1. 31s.

18

= 23 6
19 3

13
55

= 42 18

15

.*. mean local time =19h.3m.55s.

(ii.) Observed time
Correction

Greenwich time

W. Long, in time

.-. required long = 60° 34' 30" W.

Example 3.—On June 29, from a ship in the North Atlantic

Ocean, the Sun was observed to have equal altitudes when the
chronometer indicated llh. 27m. 26s. and 6h. 48m. 32s. At noon on
June 25, the chronometer was 3s. too fast, and it gains 8s. a day.

The equation of time on June 29 at 3 p.m. was + 2m. 58s. To
find the ship's longitude.

The process stands as follows :

—

Chronometer time of first observation

„ „ „ second observation + 12h.

H. M. s.

= 11 27 26
= 18 48 32

!)30 15 58

15 7 59

= 3 7 69Hence the chronometer time of local apparent noon

Correction forchronometer error June 25 = — 3s.
^

„ „ „ rate in 4 days= —32s. >- = —36
„ „ „ „ ,,3 hours=— Is. J

.'. Greenwich time of local appai'ent noon = 3 7 23

Subtract equation of time (since mean noon occurs

first) = -2 58

.'. Greenwich time of local mean noon =3 4 25
15

.'. longitude west of Greenwich =46° 6' 15''
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236. Method of Lunar Distances.—If from any cause

the ship's chronometer should stop, or its indications should

hecome unreliable, the Greenwich time may be found by
observations of lunar distances. In this method the Moon,
by its rapid motion among the stars, takes the place of a

chronometer, its position relative to the neighbouring stars

determining the Greenwich time. The Moon moves through
3G0° in 27^ days ; hence it travels at the relative rate of about
33' per hour, or rather over 1" in every 2s., and this motion

is sufficiently rapid to render it available as a timekeeper.

For this purpose, tables of lunar distances are given in the

!N"autical Almanack. These tables give the angular distances

of the Moon's centre from the Sun or from such bright stars or

planets as are in its neighbourhood, calculated for every third

hour of Greenwich mean time, and for every day of the year.

The angular distance of the Moon's bright limb from one
of the given stars may be observed by means of a sextant.

By adding or subtracting the Moon's semi-diameter, as given
in the I»fautical Almanack, and coiTecting as explained below,
the angular distance of its centre may be found. During the
interval of three hours between the times given in the

Nautical Almanack, the angular distance changes at an
.approximately uniform rate, and therefore the Greenwich
'time of the observation may be computed by proportional parts.

237. Clearing the Distance.—One of the great draw-
backs of the lunar method consists in the laborious calculations

necessary for what is called ** clearing the distance." The
angular distance between the Moon and the star will be
affected by refraction, and this alone requires a correction to

be applied to the observed lunar distance ; but there is another
correction, for what is called parallax, which is equally
important. This latter correction depends on the fact

that the Moon's distance from the Earth is only about 60
times the Earth's radius, and at this comparatively small
distance the direction of the Moon cannot be considered as

independent of the observer's position on the Earth, as has
I)ecn done with the fixed stars'^' (§5).

* Indeed, if a star happens to be behind the Moon's disc, it may
-sometimes appear on opposite sides of the Moon to two observers at
nearly opposite points on the Earth.
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For this reason, the lunar distances of a star, as tabulated

in the I^autical Almanack, are the angles which the Moon
and star subtend at the centre of the Earth. They are,

therefore, sometimes called the geocentric lunar distances.

Hence it is necessary to calculate the Moon's geocentric

position from that observed, before the Greenwich time of the
observation can be determined.

The correction for parallax, vrill be dealt with more fully

in the next chapter. Suffice it to mention here that the
parallax, like the refraction correction, depends only on
the Moon's zenith distance, and therefore, the only data

needed for clearing the distance are the altitudes of the two
bodies at the time of observation. The calculations are then
greatly simplified by the use of tables.

238. Advantages and Disadvantages of the Lunar
Method.—The method of lunar distances was introduced at

a time when chronometers were very imperfectly constructed,

and could not be relied on during a moderate voyage. At the

present time, owing to the high degree of accuracy attained

in the construction of chronometers, combined with the

reduction in the length of sea voyages since the introduction

of steam, the lunar method has been almost entirely super-

seded by the use of chronometers. It is still nsed, however^
for the occasional correction of a chronometer if the voyage
be extremely long ; and explorers rely upon it mainly.

The principal disadvantages of using lunar distances are :

1st. The calculations necessary for clearing the distance

are very tedious, and not such as could be performed readily

by a seaman possessing little or no knowledge of mathematics.

Moreover, the corrections are often considerable.

2nd. A slight error in the observed lunar distance would
introduce a considerable error in the estimated longitude.

The best sextants are only divided to every 10", and an error

of 10" in the observed lunar distance would introduce an eiTor

of 20s. in the computed Greenwich time. This would give,

in the longitude, an error of 5', or of 5 geographical miles at

the ecpiator. Even this degree of accuracy would be difficult

to attain in practice, while the rate of a well-constructed

chronometer can be depended upon to within Is. per day.
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Example.— On Nov. 14, the cleared axignlar distance of the
Moon's centre from Aldeharan was found to be 32° 44' 52". Find
the Greenwich time, having given the following data :

—

Angular Distance op the Moon from Aldeharan.

Date. Position of Star. 6 P.M. 9 P.M. Midnight.

Nov. 14. East. 33° 32' 57' 31° 44' 14" 29° 55' 32"

The calculation stands as follows :

—

Ang. dist. at 6 p.m. =33° 32' 57"

„ „ at observation = 32 44 52

Decrease since 6 p.m. = 48 5

Ang. dist. at 6 p.m. = 33° 32' 57"

„ „ at 9 P.M.= 31 44 14

Decrease in 3 h. = 1 48 43

.•. In 3h. the Moon's angular distance from Aldeharan decreases
1°48'43", or 6523";

.*, the time in which it decreases 48' 5", or 2885", is

= 3h. X ^^ = Ih. 19m. 37s.
6523

•. Greenwich time of observation = 6h. + Ih. 19m. 37s.

= 7h. 19m. 37s.

239. Longitude by Celestial Signals.—The eclipses of

Jupiter's satellites begin and terminate at times which can

he calculated beforehand ; it would, therefore, appear

possible to ascertain the Greenwich time by observing the

instants at which a satellite disappears into, or emerges
from, the shadow cast by the planet. But, as the dis-

appearance and emergence take place gradually, it is im-
possible to employ this method with accuracy to the

determination of longitude. The same objection applies still

more forcibly in the case of eclipses of the Moon.

By observing the occultations of stars behind the disc of

the Moon, we have another way of determining the Greenwich
time and finding the longitude. This is merely a particular

case of the method of lunar distances, since at the instant of

disappearance^ the star's apparent (uncorrected) distance from
the Moon's contre is equal to the Moon's semi-diameter.
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METHODS OF FINDING LONGITUDE ON LAND.

240. Longitude by repeated transmission of Chro-
nometers. The chronometer method of comparing longitudes

can be employed with far greater accuracy on land, on account

of the possibility of taking repeated journeys to and fro

in order to effect the comparison of the local times. The
rate of the chronometer is determined by observing its

error at the first station, both before and after taking it

to the second.

Suppose, for example, that it is required to find the differ-

ence of longitude between two stations, A and B. A chrono-

meter is compared with the standard clock at A, and its

error is noted. It is then carried to B, and its indications are

compared with those of a clock regulated to keep local time.

It is then again brought back to A, and compared a

second time with the standard clock. The increase in the

chronometer error during the whole interval serves to

determine the rate of the chronometer. We can now
correct for error and rate the time indicated by the

chronometer at A, and thus determine the ditference

between the local times at A and B. By converting

this difference into angular measure at the rate of 15°

to the hour, the required difference of longitude of the two
stations is determined.

It is probable that the rate of the chronometer may not be
the same while it is being shaken about on its journey
as while it is at rest. This difference of rate may be
allowed for by comparing the chronometer with the local

clock soon after arrival, and again before departing. The
total loss while at rest is thus found, and by subtract-

ing we have the total loss during the two journeys. The
only assumption which it is necessary to make is that

the rate is the same on the outward journey as on the
return journey.

In order to obtain a result as free from error as possible,

a number of journeys to and fro are performed, and several

chronometers are used on each journey. The most accurate

result is found by taking the mean of the calculated values

for the difference of longitude.
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Examples.

At l7h. by a chronometer, the Greenwich mean time was found
to be 16h. 59m. 57'2s. It was taken to a place A, and indicated 4h.,

when the local mean time was 3h. 47m. 46"9s. ; and when it indicated

llh., the Greenwich time was llh. Om. 9*7s. To find the longitude

of A in time and in angle.

Here, at l7h., the chronometer error by Greenwich time was — 2"8s.

„ „ 24 + llh. „ „ „ „ +9-7s

.'. in 18h. the chronometer lost 12-5s.

;

.'. the loss in llh. = — x 12*5s. = 7'64s. nearly j

18

.•. the Greenwich time, when the chronometer indicated 4h., was

= 4h. - 2-8s. + 7-64s. = 4h. Om. 4-843.,

and the local time at the same instant was = 3h. 47m. 4G'9s.

/. required longitude = 12m. 17'9s. "W. = 3° 4' 28" W.

2. As a ship starts from Liverpool, its chronometer indicates Oh.,

and is correct by Greenwich mean time. After 16 days, as it reaches

Quebec, the chronometer indicates 7h. Om. 23s., and Quebec time is

2h. 5m. 42s. Nearly seven days afterwards, the ship departs at

Quebec noon, the chronometer then reading 4h. 54m. 39s. ; and when
it reaches Liverpool, after a voyage of just over fourteen days, it is

found to bo 17s. slow by Greenwich mean time. Find the longitude

of Quebec.

By Quebec time, the ship stayed in port 7d. — 2h. 5m. 42s.
= 6d. 21h. 54m. 18s.

By chronometer, the ship stayed in port 7d.4h.54m.39s. — 7h.Om.23s.
= 6d. 21h. 54m. 16s.

.*. in 7 days in port, chronometer lost 2s.

But in 37 days altogether, „ „ 17s.

.'. in 30 days at sea, „ „ 15s.

.-. in 16 days, from Liverpool to Quebec, it lost 8s.

But chronometer time on arrival was 7h. Om. 23s.

.". Greenwich time was 7h. Om. 31s.

And local time was 2h. 5m. 42s.

The difference = longitude of Quebec (in time) = 4h. 54m. 49s.

.-. Longitude of Quebec (in angle) = 73° 42' 15" W.
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241. Longitude by the Chronograph.—Wlien two
observatories are in telegraphic communication, the local

time may be readily signalled from one to the other by means
of the electric current, and the difference between the longi-

tudes thus determined.

This method is employed in connection with the chrono-

graphic method of recording transits, the chronographs being
connected by the telegraph line, so that a transit is recorded

nearly simultaneously at both stations.

Let us call the two stations A and B. When the star

crosses the meridian at A, the observer presses the button of

his chronograph. Let t^^ t^ be the times of transit at A as

thus recorded at A and B respectively. When the same star

crosses the meridian at B, the times of transit are again

recorded at A and B. Let these recorded times be T^ and
^2 respectively.

The transmission of the signal from one station to the

other is not quite instantaneous, because a small interval of

time must always elapse before the current has attained

sufficient strength to make the signal at the distant station.

Let this interval be x. Then the transit atA will be recorded

too late at B by the amount x, and the transit at B will be
recorded too late at A by the same amount x.

When this correction is applied, the true times of the two
transits, as determined by the chronograph record at A, will

be t^ and T^—x. Hence, if L denote the difference of longi-

tude in time measured westwards from A to B, the chrono-

granh record at A gives

Z=T,-x-t^.
Again, the true times of the two transits, as determined by

the chronograph record at B, will be t^—x and 2^. Hence
the chronograph record at B gives

L=T,-{t,-x) = T,-t,-\-x,

By addition, we have

a result which does not involve x.

Thus we see that, by using both chronograph records, and
taking the mean of the separately calculated differences of

longitude, the corrections due to the time occupied by the

passage of the signals are entirely eliminated.
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*242. Elimination of Personal Equation.—In the

above investigation we have taken no account of the personal

equations of the two observers. But if e is the correction for

personal equation of the observer at A, and JEJ is that of the

observer at B, the observed times f^, t-^ must both be increased

by e^ and ^\, T^ must both be increased by E. Introducing

these corrections, the formula gives

To eliminate the corrections, let the two observers change

places, and repeat the operations, and let the new recorded

times of transit be denoted by accented letters. The cor-

rection E must now be applied to the times ^Z, t^^ and the

correction e must be applied to T( and T^, Therefore

L=.\[T;-t;^T\-t^)-\-[e-E).
Uy again taking the mean of the two results we get

a result in which personal equation is eliminated.

243. Longitude by Terrestrial Signals.—Before the

introduction of the electric telegraph and the chronometer,

other signals had to be used. Among such signals may
be mentioned flashes of light and rockets visible simul-

taneously from two stations at a considerable distance apart.

The heliograph, in which signals are transmitted by flashes

of reflected sunlight, forms another means of determining

<lifferences of longitude between two stations visible one from
the other ; and this method is still often found very useful

in surveying a country. A flash of lightning and the bursting

of a meteor have also occasionally been used, but they are

far too uncertain in their occurrence to be of much value.

The local time of the signal is noted at each place, and the

difference of these times gives the difference of longitudes.

The signals must in every case be seen, not heard, as an ex-

plosion, even if audible at two distant stations, would not be
heard simultaneously at both, owing to the comparatively small

velocity of sound. Where the distance between the two stations

is great, a chain of intermediate stations must be established,

and the local time of each station compared with that of the
next ; this method was used in most of the earliest determina-
tions of longitude. Now such methods are entirely superseded

by the use of the chronometer and the electric telegraph.
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244. Longitude by Moon culminating Stars,—Here,
as in tlie method of lunar distances, the Moon's position

determines the Greenwich time, but instead of observing the
Moon's angular distance from a neighbouring star, we
observe the difference of right ascension between the
Moon and the star by taking their times of transit with a
transit circle.

The method is not available at sea, because transits cannot
be taken with a sextant. It can be used to determine, by
means of a portable transit circle, the longitude of a tem-
porary observatory set up in a country where there is no
means of telegraphic communication with the outer world.

Its great advantage over the method of lunar distances is that

it does not involve the laborious process of "clearing the

distance," because the times of passage across the meridian

are unaffected by parallax and refraction.

The necessary data for the calculations are given in the
Nautical Almanack. The time of transit of the star deter-

mines the local sidereal time at the place, and when the

observatory clock is thus corrected, the time of the Moon's
transit is its E.A. The tables in the Nautical Almanack give

the Moon's E.A. at the time of its transit at Greenwich.
The increase of R.A. is proportional to the time which elapsed

between the transits at Greenwich and at the place of

observation, and hence the Greenwich time of the local

transit is known. Hence, the longitude may be found.

*245. Longitude by Meridian Altitude of the Moon.—Another
method of linditig the longitude is sometimes used, namely to find

the Greenwich time by observations of the Moon's declination. For
this purpose, the Moon's meridian altitude is observed with a
transit circle and its declination deduced (§ 24). The Nautical
Almanack contains the Moon's declination for every 3h. of Green-
wich time ; from this the Greenwich time of observation may be
found by proportional parts. But the method is difficult to

employ, because the observations are affected by the same
sources of error, arising from parallax and refraction, as in the
method of lunar distances, and thei'e is also a correction for dip in

observations made at sea. Moreover, the Moon's daily motion in

declination is so small (the greatest variation being about 5° per
day), that a slight error in the computed declination would very
considerably affect the calculated value of the longitude.
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Section YI.— Captain Sumner's Method.

246. We shall now show that, by taking two altitudes of

the Sun with a sextant, and noting the Greenwich times of

observation with a chronometer, we can construct a ship's

position on a terrestrial globe geometrically.

The Sub-Solar Point.—We can at once find the position

on the terrestrial globe of a place at which the Sun is in the

zenith on a given day, at a given instant of Greenwich time.

Tor, evidently, the latitude of the place is equal to the Sun's

declination, and is, therefore, known ; while the longitude

west of Greenwich is equal to the Greenvrich apparent time,

which may be found by subtracting the equation of time from
the mean time. The place is called the Sub-Solar Point.
The Circle of Position.—Assuming the Earth to be

spherical, the Sun's Z.J), at any place is equal to the angular

distance of the place from the sub-solar point. (For it i&

evidently the angle between the directions of the zeniths at

the given place and at the sub-solar point.) Hence, the
places at which the Sun has a given Z.D. all lie on a small

circle of the terrestrial globe, whose pole is at the sub-solar

point, and whose angular radius is equal to the Sun's Z.D.
This circle is the circle of position.

Geometrical Construction for the Position of the
Ship.— If, then, two altitudes of the Sun be observed,

and the Greenwich times noted with a chronometer, we can
find the sub-solar points, and thus construct the circles of

position, and we know that the ship lies on each circle. The
ship must, therefore, be at one of the two points in which
the two circles cut. To decide which is the actual position,

the Sun's azimuth must be very roughly estimated at the
two observations. On the globe it will be easy to see at which
of the two places the Sun had the observed azimuths. Thus
the ship's exactposition on the globe isfound. It is easy to allow

for the ship's motion between the observations.

If two stars are observed, the two substellar points (or

places at which the stars are in the zenith) can be con-

structed. Eor the latitude of either is equal to the corres-

ponding star's decL, and its longitude is equal to the star's

hour angle at Greenwich = sidereal time — star's R.A.
The ship's place can now be found by drawing the circles-

of position as before.

ASTRON.
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EXAMPLES.—yil.
1. At noon on the longest day a circumpolar star is passing over

the observer's meridian, and its zenith distance is the same as that

of the Sun's centre ; at midnight it just grazes the horizon. Find
the latitude.

2. On January 2, 1881, on a ship in the North Atlantic in longi-

tude 48° W., it was observed that the Sun's meridian altitude was
15° 21' 45". The Sun's declination at noon at Greenwich on the

same day was 22' 54' .33", and the hourly variation 13"78". Find
the ship's latitude.

3. Show how to find the latitude by observing the difference of

the meridian zenith distances of two known stars which cross the

meridian on opposite sides of the zenith at nearly equal distances

from it. Explain whether the stars chosen should be near to or

remote from the zenith. Give also the advantages and disadvan-

tages of this method of finding the latitude, as compared with the

method of circumpolars.

4. On a certain day the observed meridian altitude of a Cassiopein:

(declination 55° 49''ll-l" N.) was 85° 10' 18". The eye of the

observer was 18 feet above the horizon, and the error for refraction

for the altitude of the star is 5" ; determine the latitude.

5. The deck of a ship (stationary) is 25 feet from the sea, and the

dip of the horizon at 1 foot is 1' ; if the two meridian altitudes of a
circumpolar star from the sea horizon be 60° 2' and 29^ 58', find the
latitude.

6. At the winter solstice the meridian altitude of the Sun is 15°.

What is the latitude of the place ? What will be the meridian
height of the Sun at the equinoxes and at the summer solstice ?

7. Describe the altazimuth, and show how it can be used to find

the time of apparent noon and the azimuth of the meridian by the

method of equal altitudes.

8. A vertical rod is fixed exactly in the centre of a circular foun-
tain basin, and it is observed that on the 25th of July the extremity
of the shadow exactly reaches the margin of the water at lOh. 7m.
A.M., and at 2h. 25m. p.m. The equation of time on that day is

+ 6m. What is the error, compared with local time, of the watch
by which these observations were taken ?

9. In the railway station at Ventimiglia is a clock one face of

which indicates Paris time, the other Roman time. It is observed
that, when the former indicates 12h. 39m. 4s., the latter indicates

Ih. 19m. 40s. The longitude of Paris being 2° 21' E., find the
longitude of Rome.
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10. In Qriestion 9, what is the corresponding local time at Venti-

miglia, the longitude being 7° 35' E. ?

11. A chronometer is set by the standard clock at Greenwich at

6 A.M. It is then taken to Shepton Mallet, and indicates noon when
the local time is llh. 49m. 50s. The chronometer is then brought

back to Greenwich, and indicates 9 p.m., when the correct time is

8h. 59m. 55s. Find the longitude of Shepton, supposing the chrono-

meter rate uniform.

12. In applying the lunar method, find the error in the calculated

longitude of the observer due to an error of 1' in the tables of the

Moon's longitude.

13. Amerigo Vespucci is said to have found his longitude in lati-

tude 10° N. in the following manner. At 7.30 p.m. the Moon was
1° E. of Mars, at midnight the Moon was 5|° B. of Mars. The
Nuremberg time of conjunction of the Moon and Mars was midnight.

Hence he calculated that his longitude was 82^° W. of Nuremberg.
Discuss the accuracy of the method, and point out the necessary

corrections.

14. A chronometer whose rate is uniform is found at Greenwich
to have an error of 5i hours when the time which it indicates is fi. It

is then taken to a place A, and when it indicates t.^ it is found that

the excess of the observed local time of the place A over t^ is §2 hours.

It is now again brought back to Greenwich, and the chronometer
time and error are observed to be t^ and 83 hours respectively.

Prove that the longitude of A east of Greenwich is

15 (5.2/3 + Safi + 5ifo-f253-*3Si-fi52)/(f3-*i) degrees.

15. The sidereal times of transit of a certain star across the

meridian of an observatory A, as recorded at A, and by a telegraphic

signal at B, are fi, f.j respectively. The sidereal times of transit of

the same star across the meridian of B, recorded by telegraphic

signal at A, and at B, are Tj, T2 respectively. If the signals take
the same time to travel in either direction, show that the difference

of the longitudes of B and A in angular measure
= ¥(ri-^l + T2-f2).

16. The altitudes of two known stars, are observed at a given
instant of time. Show how to find on a terrestrial globe the places

at which the stai-s are vertically overhead, and give a geometrical
construction for the place of observation.

17. In Question 16, find the condition that there should be two,
one, or no possible positions of a ship at which the altitudes of the
known stars have certain given values.

18. If longitude is found by lunar distances, and latitude by
meridian altitudes, find the latitude in which an ei'ror of 1' in the
sextant reading will introduce the same error in both observations
if estimated not in ang-le, but in miles on the Earth's surface.
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EXAMIITATION PAPEK.—VII.
1. Give a description of the Sextant, and explain how to use it

for taking altitudes (1) at sea, (2) on land.

2. How does a Chronometer differ from an ordinary watch ?

What are its error and rate ?

3. Prove that a single meridian altitude of a star, whose declina-

tion is known, will determine the latitude. "Why is a zenith sector

sometimes preferred to a transit circle for this purpose ?

4. Show how the latitude is determinable by two meridian obser-

vations of a circumpolar star. Why is this method not generally

applicable on board ship ?

5. Show how to find the latitude of a place (1) by observing the

Sun's altitude at a given time
; (2) by the Prime Vertical Instru-

ment.

6. Describe the method of equal altitudes for finding the time of

transit of a celestial body. If the times be observed by the ship's

chronometer, show how to find the longitude.

7. What methods are available for the determination of Greenwich

time at sea ? Describe the method of taking lunar distances.

8. How is the difference of longitude determined by electric

telegraph ? Explain how the personal equation and the time of

transmission of the signal are eliminated.

9. Contrast the method of Moon-culminating Stars with that of

Lunar Difetances in respect of the instruments employed, and of the

intricacy of the calculations involved. What other celestial signals

have been proposed, and what is their disadvantage ?

10. Knowing the Greenwich time, show how to construct graphi-

cally on a globe the position of the ship without any calculation

whatever.



CHAPTEli VIII.

THE MOON.

Section I.

—

Parallax—The Moon's Distance and Dimensions.

247. Definitions.—By tlie Parallax of a celestial body-

is meant the angle between tbe straight lines joining it to

two different places of observation.

In § 5 we stated that the fixed stars are seen in the same
direction from all parts on the Earth ; hence such stars have
no appreciable parallax. The Moon, Sun, and planets, on
the other hand, are at a (comparatively) much smaller dis-

tance from the Earth, and their parallax is a measurable

quantity. The distance of the Moon from the Earth's centre

is about 60 times the radius of the Earth. The effects of

parallax in connection with the method of Lunar Distances

have already been mentioned (§237).

To avoid the necessity of specifying the place of observa-

tion, the direction of the Moon or any other celestial body is

always referred to the centre of the Earth. The direction

of a line joining the body to the Earth's centre is cajled the

body's geocentric direction. The angle betweeja^he geo-

centric direction and the direction of the body relative to

any given observatory is called the body's Geocentric
Parallax, or more shortly, its Parallax. Thus the
geocentric parallax is the angle subtended at the body by
the radius of the Earth through the point of observation.

The Horizontal Parallax is the geocentric parallax of

a body when on the horizon of the place of observation-
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248. General Effects of Geocentric Parallax.—
Assuming the Earth to be spherical, let C (Fig. 77)
he the Earth's centre, the place of observation, and M the
centre of the Moon or other observed body. Then the angle
OMC is the geocentric parallax of 31.

Produce CO to Z; then OZi?, the direction of the zenith

at 0, and ZOM is therefore the zenith distance of M as seen

from (corrected of course for refraction). IS'ow

aZOMz= aZCM^ z OMC;
therefore the apparent zenith distance of M is increased by
the amount of the geocentric parallax. Conversely to find

Z ZCM we must subtract the parallax OMC from the
observed zenith distance ZOM.
The azimuth is unaltered by parallax, because OM, CM

lie in the same plane through OZ.

Fig. 77.

249. To find the Correction for Geocentric Parallax.

In Fig. 77, let

a =. CO = Earth's radius,

d = CM— Moon's (or other body's) geocentric distance,

z = ZOM= observed zenith distance of if,

p = OMC = parallax of M.

By Trigonometry, since the sides of AOMC are propor-

tional to the sines of the opposite angles,

sin CMC ^ CO
•'

sin COM CM'
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,, , . sin*? a
that IS -T-^ = -^.

smz a

Therefore sinp = — sin ».

Let P be the horizontal paraUax of M. Then, when
z = 90°, j9 = P, and therefore the last formula gives

smi>=ILsiii90"=iL.
d a

Hence, by substitution,

sinp = sin P . sin ;:;.

This formula is exact. But the angles p and F are in

every case very small, and therefore their sines are very
approximately equal to their circular measures. Hence we
have the approximate formula

p=i IP , sin «,

or, The parallax of a celestial body varies as the
sine of its apparent zenith distance.

The last formula holds good no matter what be the unit of

angular measurement. Thus if p'\ P" denote the numbers
of seconds in ^, P respectively, we have, by reducing to

seconds, p" = P" sin z.

Examples.

1. Supposing the Sun's horizontal parallax to be SS", to find the
correction for parallax when the Sun's altitude is G0°.

Here z = 90° -60° = 30°, P" = 8-8", and therefore

p" = P" sin 30° = 8-8" X i = 4-4".

2. To find the corrections for the Moon's parallax for altitudes oi
30° and 45°, the Moon's horizontal parallax being 57'.

In the two cases we have respectively z = 60° and z = 45°, and
the corresponding corrections are

p" = 57' sin 60" = 57' x ^3 = 28' 80" x ^3 ~

= 1710" X 1-7320 = 2961-7"= 49' 21-7",

and p" = 57' sin 45° = 57' x ^^2 = 28' 30" x ^2
= 1710" X 1-4142 = 2418-3"= 40' 18-3".
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250. Relation "between the Horizontal Parallax
and Distance of a Celestial Body.—In the last paragraph

we showed that sin P = 4- •

a

This formula may be proyed independently by drawing
MA to touch the Earth at A. J/ is on the horizon at A

;

the Z CMA is therefore the horizontal parallax P, and we
have immediately

sin P = sin CMA = CAICM= ^/d.

Since P is small, we have approximately

Circular measure of I* = ajd,

and therefore in seconds

P = 180X60X60^ ^ 20Q2Q5 ±,
tr d d

which shows that, The horizontal parallax of a body-
varies inversely as its distance from the Earth.

Fig. 78.

If we know the Earth's radius a and the distance r7, the

last formula enables us to calculate the horizontal para lax

P". Conversely, if we know the horizontal parallax of a Dody
we can calculate its distance.

Example 1.—Given that the Moon's distance is 60 times the
Earth's radius, to find the Moon's horizontal parallax.

We have - = —

;

d 60

circular measnre of P =^ approximately.

Now the unit of circular measure = 57"295

P (in angular measure) = t;"^ x 57-2957° = 57-2957'

= 57' 17-7",

and this is the required horizontal parallax.
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Example 2.—Given that the Sun's parallax* is 8"8", to find

the Sun's distance, the Earth's radius being 3,960 miles.

The circular measure of 8'8'' is = ^^—

,

180 X 60 X 60

and, by the formula, we have, for the Sun's distance in miles,

, ^ a ^ 3960 X 180 X 60 X 60

circ. meas. of P 8'8 x tt

Taking ir =3f , and calculating the result correct to the first three
significant figures, we find the Sun's distance d

= 92,800,000 miles approximately.

It would be useless to carry the calculations beyond the third

figure, for, of course, the values of the Earth's radius and Sun's
parallax are only approximate; moreover, we should have to use
the more accurate value of ir, viz., 3*141592

251. Comparison between Parallax and Kefraction.
—It will be noticed that while parallax and refraction both

produce displacements of the apparent position of a body along

a vertical circle, the displacement due to parallax is directed

away from the zenith, and is always proportional to the sine

of the zenith distance, while that due to refraction is directed

towards the zenith, and is proportional to the tangent of the

zenith distance, provided the altitude is not small. Also the

correction for parallax is inversely proportional to the distance

of the body, and is imperceptible, except in the case of mem-
bers of our solar system ; while the correction for refraction

is independent of the body's distance, and depends only on
the condition of the atmosphere.

The Moon's horizontal parallax is about 57', while the

horizontal refraction is only 33'. Hence, by the combined
effects of parallax and refraction, the Moon's apparent
altitude is diminished, or its Z.D. increased. The time of

rising is, therefore, on the whole retarded, and the time of

setting accelerated. The effect of parallax on the times of

rising and setting may be investigated by the methods of

§§ 104, 190.

Tor all other bodies, including the nearest planets, the
correction for refraction far outweighs that due to parallax.

* When astronomers speak of the parallax of the Sun, Moon, or
a planet, without further specifying the observation, the horizontal

parallax is always to be understood.
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252. To find the Moon's Parallax by Meridian
Observations.—The Moon's parallax may be conveniently

determined as follows. Let A and B be two observatories

situated on the same meridian, one north, the other south of

the equator. Let M denote the Moon's centre, and let x be
a star having no appreciable parallax, whose E.A. is approxi-

mately equal to that of the Moon, their declinations being

also nearly equal.

Let the Moon's meridian zenith distances Z^if and Z^BM
be observed with the transit circles at A and j5, and let xAM
and xBM^ the differences of the meridian Z.D.'s of the Moon
and star at the two stations, be also observed.

Let %, = iZAM, %, = lZ'BM.
«i = Z xAM^ a'.^ = I xBM.
P = Moon's required horizontal parallax.

By § 249, we have, approximately,

Z AMC = P sin Zi, Z BMC = P sin Zj.

Fm. 79.

.-. Z AMB = P (sin z, + sin z.^)

Moreover, if MX be drawn parallel to Ax or Bx^

Z XMA = Z MAx = ay
;

Z X3IB = Z MBx = a, :

.-. Z AMB = a^— a.2

From (i.) and (ii.),

P (sin Zi + sin %^ = a^— fljg

;

sin 2!i+ sin z-i

'

whence the Moon's parallax, P, may be found.

(;•)•

(ii.).
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253. If the two observatories are not on the same meridian,

allowance must be made for the change in the Moon's
declination between the two observations. Let the stations

be denoted hy A, £, and let B' be the place on the meridian

of A, which has the same latitude as B. Then, if the Moon's
meridian Z.D. be observed at B, we can, by adding or sub-

tracting the change of declination during the interval, find

what would be the meridian Z.D. if observed from £'.

Moreover, the star's meridian Z.D. is the same both at B and
at B'. Hence it is easy to calculate what would be the angles

at B' correi- ponding to the observed angles at B. From the

former, and the observed angles at ^, we find the parallax

JP, as before.

To ensure the greatest accuracy, it is advisable that the

difference of longitude of the two stations should be so small

that the correction for the Moon's motion in declination

is trifling. It is necessary, however, that a^— a^ should

be large ; for this reason the stations should be chosen

one as far north and the other as far south of the equator as

possible. The observatories at Greenwich and the Cape of

Grood Hope have been found most suitable.

The principal advantage of the above method is that the

probable errors arising from any uncertainty in the corrections

for refraction are diminished as far as possible.

For, since the Moon and observed star have nearly thfe

same declination, the corrections for refraction to be applied

to fl?i, a^, their small differences of Z.D., are very small indeed.

The errors are not of so much moment in the denominator
sin Zj + sin Zj, as the latter is not itself a small quantity.

Prom such observations, the mean horizontal parallax of

the Moon has been found to be 57' 2"707".

This value corresponds to a mean distance of 60-27 times
the equatorial radius of the Earth, or 238,840 miles. The
distance and parallax of the Moon are not, however, quite

constant ; their greatest and least values are in the ratio of

(roughly) 19 : 17. For rough calculations, the Moon's
distance may be taken as 60 times the Earth's radius.

I^either this method nor the next ( § 254) gives accurate
results for the Sun, for the brilliancy of the rays renders all

stars in its neighbourhood invisible.
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254. To find the Parallax of a Planet from Observa-
tions made at a Single Observatory.—The parallax of

Mars, when nearest the Earth, has also been determined by
the following method, depending on the Earth's rotation.

Since the apparent altitude of a body is always diminished

by parallax, it can easily be seen by a figure, that, shortly after

a planet has risen, its E,.A. and longitude appear greater

than their geocentric values (the planet being displaced east-

wards), while shortly before setting they appear less

than their geocentric values (the displacement being west-

wards). The planet's position, relative to certain fixed stars,

is observed soon after rising and before setting by means of

an equatorial furnished with a micrometer or heliometer.

The observed change of position is due partly to parallax

and partly to the planet's motion relative to the Earth's

centre during the interval between the observations, which
produces displacements far greater than those due to

parallax. But by repeating the observations on successive

days, the planet's rate of motion can be accurately

determined, and the displacements due to parallax can thus

be separated from those due to relative motion. Refraction

need not be allowed for ; because it affects those stars with
which the planet is compared, as well as the planet itself.

This method can be used for the Moon, but the Moon's
motion is so rapid that the calculations are more complicated.

*255. Effect of the Earth's Ellipticity.—The effect of parallax
is made rather more complicated by the spheroidal form of the
Earth. For, by § 249, the magnitude of the horizontal parallax at

any place depends on its distance from the Earth's centre, and since

this distance is not the same for all places on the Earth, the horizontal

parallax is not everywhere the same. Again, the direction in which
the body is displaced is away from the line (produced) joining the
centre of the Earth with the observer (§ 248). But this line does not
pass exactly through the zenith (§ 117). Hence the displacement
is not in general along a vertical, so that the azimuth as well as
altitude is very slightly altered by parallax.

256. The Equatorial Horizontal Parallax is the geo-

centric parallax of a body seen on the horizon of a place at the

Earth's equator. It is generally adopted as the measure of

the parallax of a celestial body. Its sine is equal to

(Earth's equatorial radius)/(body's geocentric distance).
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257. Relation between Parallax and Angular
Diameter.—In Fig. 80 it will be seen that the angle CJIA,
which measures the parallax of M, also measures the Earth's

angular semi-diameter as it would appear from M. Thus,
the Moon^s parallax is the angular semi-diameter of the Earth
as it would appear if observed from the Moon.

Fig. 80.

258. To Find the Moon's Diameter.—^Let a, c he the
radii of the Earth and Moon respectively, measured in miles,

d the distance between their centres, Pthe Moon's horizontal

parallax, m the Moon's angular semi-diameter as it would
appear if seen from the Earth's centre. Then, from Pig. 80,

smF=~, sin m = sin TCM = ?^= -f--

d' CM d'
.'. c : a = Binm : sm F = m : P approximately

;

i.e. (rad. of Moon) : (rad. of Earth)
= ( C 's ang. semi-diam.) : ( C's hor. parx.).

Hence, knowing the Moon's horizontal parallax and its

angular diameter, the Moon's radius can be found.

The Moon's mean angular diameter 2m is observed to be
about 31' 5". From this the Moon's actual diameter is readily

found to be about 2160 miles, or y^- of the Earth's diameter.

The surfaces of spheres are proportional to the squares, and the
volumes to the cubes of their radii. Hence the Moon's superficial

area is about ^y, or ^^, and its volume about ^l 3T> or 7;\; of that
of the Earth.

Example.—To find the Moon's diameter in miles, given
(I 's angular diameter = 31' 7",

C 's equatorial horizontal parallax = 57' 2",

Earth's equatorial radius = 3963 miles.

.-. ^ 's diameter 2c = a x—= 3963 x ?2:1Z^ = 3963 x ?---?'^ = 2162.
P 57' 2" 3422

Thus the Moon's diameter is 2162 miles.
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Section II.

—

Synodic and Sidereal Months—Moon's Phases—
Mountains on the Moon.

259. Definitions.—In § 40 we defined the lunation as
' tlie period between consecutive new Moons, and showed that

it was rather longer than the period of the Moon's revolution

relative to the stars. We shall now require the following

additional definitions, most of which apply also to the planets.

The elongation of the Moon or planet is the difference

between its celestial longitude and that of the Sun. If the

body were to move in the ecliptic its elongation would be its

angular distance from the Sun.

The Moon or planet is said to be in conjunction when it

has the same longitude as the Sun, so that its elongation is

zero. The Moon is in conjunction at new Moon (§ 40). The
body is in opposition when its elongation is 180°. In both
positions it is said to be in syzygy. The body is said to be

in quadrature when its elongation is cither 90° or 270°.

The period between consecutive conjunctions is called the

synodic period of the Moon or planet. The Moon's
synodic period is, therefore, the same as a lunation; it is

also called a Synodic Month. In this period the Moon's
elongation increases by 360°, the motion being direct.

The period of revolution relative to the stars is called the

sidereal period ; that of the Moon, the Sidereal Month.
The average length of the Calendar Month in common

use is slightly in excess of the synodic month {cf. § 171).

200. Relation between the Sidereal and Synodic
Months.

Let the number of days in a year be Y^ in a sidereal month
M, and in a synodic month S.

,

In J/^days the Moon's longitude increases 360°

;

.-. in 1 day the Moon's longitude increases 360°/J/.

Similarly in 1 day the Sun's longitude increases 360°/ F, .

and the Moon's elongation increases 360°/ *S.

Now, from the definition,

(Moon's elongation) = (Moon's long.)— (Sun's long.), .

.

and their daily rates of increase must be connected by the

'

same relation :
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360_360_360.

i-JL-i or JL = i+JL.
S M Y' M S ^ 1'
1

I.e.,

synod, mouth year

Example.—Find (roughly) the length of the sidex'eal month, given
that the synodic month (S) = 29|d., and the year (F) = 36^4(1.

Here we have i = -l--,A_.

To simplify the calculations, we put the relation into the form

29iiL365i^ 3651^ /^_m\
29i + 365i

394f
- \ 394|/

= 29 5-29-5 X iil = 29-5-2-20 = 27-3.
1579

Hence the sidereal month is very nearly 27j days.

261. To determine the Moon's Synodic Period.—
An eclipse of the Sun can only happen at conjunction, and
an eclipse of the Moon at opposition, and the middle of the

eclipse determines the exact instant of conjunction or oppo-

sition, as the case may he. Hence, by observing the exact

interval of time between the middle of two eclipses, and
counting the number of lunations between them, the length

of a single lunation, 6r synodic period, can be found with
great accuracy expressed in mean solar units of time.

The records of ancient eclipses enable us to find a still closer

approximation to the mean length of the lunation. From
modern observations, the length of a lunation has been found
with sufficient accuracy to enable us to tell the exact number
of lunations between these ancient eclipses and a recent lunar
eclipse (this number being, of course, a ivJwIe number). By
dividing the known interval in days by this number, the
mean length of the synodic period duz'ing the interval can be
accurately found. At the present time the length of a
lunation is 29-5305887 days, or 29d. 12h. 44m. 2-7s. nearly.

From this the length of the Moon's sidereal period is cal-

culated, as in § 260, and found to be 27d. 7h. 43m- 11 -Ss.

nearly
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262. Phases of the Moon.—The acccompanying dia-

grams will show how the phases of the Moon are accounted

for on the hypothesis that the Moon is an opaque body
illuminated by the Sun. In the upper figure the central

globe represents the Earth, the others represent the Moon in

different parts of its orbit, while the Sun is supposed to be at

a great distance away to the right of the figure.* The half

of the Moon that is turned towards the Sun is illumi-

nated, the other half being daj-k. The Moon's appearance

depends on the relative proportions of the illuminated and

darkened portions that are turned towards the Earth.

<

JimB^t)^B
© €)

/ \

©
Ij

\ Q ^ ^

\l
Earth J

F© ®H

Hast o o West

Fig. 81.

The lower figures, a, b, c, d, e, f, g, h, represent the appear-

ances of the Moon relative to the ecliptic, as seen from the

Earth when in the positions represented by the corresponding

letters in the upper figure.

* The Sun's distance is about 390 times the Moon's. If the

former be represented by an inch, the latter will be represented by
about 11 yards.
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At A, a the Moon is in conjunction, and only tlie dark
part is towards the Earth. This is called New Moon.

At B, h a portion of the bright part is visible as a crescent

at the western side of the disc. The Moon's appearance is

known as horned. The points or extremities of the horns

ai'e called the cusps.
At C, c the Moon's elongation is 90°, and the western half

of the disc, or visible portion, is illuminated, the eastern half

being dark. The Moon is then said to be dichotomized.
This is called the Pirst Quarter. The Moon's age is about

7| days.

At i>, d more than half the disc is illuminated. The
Moon's appearance is then described as gibbous.
At E, 6 the Moon is in opposition. The whole of the disc

is illuminated. This is called Pull Moon. The Moon's age

is about 15 days.

At i^, / a portion of the disc at the western side is dark.

The Moon is again gibbous, but the bright part is turned in

the opposite direction to that which it has at 2), d.

At G, g the Moon's elongation is 270°. The eastern half

of the disc is illuminated, and the western half is dark. The
Moon is again dichotomized. This is called the Last
Quarter. The Moon's age is about 22 days.

At H, h only a small crescent in the eastern portion is still

illuminated. The Moon is now again horned, but the horns

are in the opposite direction to those in B, h.

Finally, the Moon comes round to conjunction again at A,
and the whole of the part towards the Earth is dark.

From new to full Moon, the visible illuminated portion

increases , and the Moon is said to be waxing. From full to

new, the illuminated portion decreases, and the Moon is said

to be waning.
It will be noticed from a comparison of the figures that

the illuminated portion of the visible disc is always that

nearest the Sun. Moreover, its area is greater the greater

the Moon's elongation.*

* The phases of the Moon may be readily illustrated experi-
mentally, by taking an opaque ball, or an orange, and holding it in

different directions relative to the light from the Sun or a gas-
burner.

ASTROlf. P
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263. Relation between Phase and Elongation.—Let
11 (Fig. 82) be the centre of the Moon, MS the direction of

the Sun, E'ME that of the Earth. Draw the great circles

AMB perpendicular to ME, and CMD perpendicular to MS
;

the former is the boundary of the part of the Moon turned

towards the Earth, and the latter is the boundary of the

illuminated portion. Hence the visible bright portion is the

lune AMC. The angle of the lune, Z AMC, is equal to

Z E'MS (Sph. Geom. 16). The area of a spherical lune is

proportional to its angle. Hence,

area of visible illuminated part _ /.AMC __ I E'MS
area of hemisphere 180° "" 180°

__ 180°~Z-£'iI//S

180°

Fig. 82. Fig. 83.

But this does not give the ** apparent area " of the bright
part. Por, as in § 145, the apparent area of a body is the
area of the disc formed by projecting the body on the celestial

sphere. If i\^ denote the projection of the point C on the
plane AMB (so that CN is perpendicular to BA), the arc

A C will be seen in perspective as a line of length AN, and
the bright part will be seen as a. plane lune (Eig. 83), whose
boundary PCP' optically forms the half of an ellipse whose
major axis is PP\ and minor axis 2JfiV.
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It may be shown that

area of half-ellipse PCP' : area of semicircle FAP'
= 3m '.MA

and .-. area APCP' : area APBP' = AN : AB
= 1 - cosAMC : 2 = 1 -cos E'MS : 2.

Hence the apparent area of the bright part is proportional to

l-co^SME'.

Fig. 84.

The angle 8ME* differs from the Moon's elongation

SEM by the small angle ESM (Pig. 84) ; i.e., the angle

which the Moon's distance subtends at the Sun. This angle

is very small, being always less than 10'. Hence the

area of the phase is very approximately proportional to

1— cos(Moon's elongation).

264. Determination of the Snn's Distance by Aris-

tarchus.—Erom observing the Moon's elongation when
dichotomized, Aristarchus (b.c, 270 circ.) made a computation

of the Sun's distance in the following manner. When the

Moon is dichotomized, z SME=i 90°, the Moon's elongation

Z SEM= 90°- z ESM, and cos SEM= EM/ES. Hence,

by observing the angle SEM, the ratio of the Sun's distance

to the Moon's was computed.

But this method is incapable of giving reliable results, owing
to the impossibility of finding the exact instant when the Moon
is dichotomized. The Moon's surface is rough, and covered

with mountains, and the tops of these catch the light before

the lower parts, while throwing a shadow on the portions

behind them. Hence the boundary of the bright part is

always jagged, and is never a straight line, as it would be at

the quarters, i£ the surface of the Moon were perfectly smooth.

In fact, Aristarchus estimated the Sun's distance as only

about 19 times that of the Moon, whereas they are really in

the proportion of nearly 400 to 1.
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265. Earth-Shine on the Moon.— Phases of the
Earth.—When the Moon is nearly new, the unilluminated

portion of its surface is distinctly risible as a disc of a diill-

red colour. This appearance is due to the light reflected

from the Earth as "Earth-shine," which illuminates the

Moon in just the same way that the moonshine illuminates

the Earth at full Moon. From § 258, the Earth's superficial

area is greater than the Moon's in the proportion of about

40 : 3. Consequently the Earth-shine on the Moon is more
than 13 times as bright as the moonshine on the Earth.

The Earthy as seen from the Moon, would appear to pass

through phases similar to those of the Moon, as seen from
the Earth. The Earth's and Moon's phases are evidently

supplementary. Thus, when the Moon is new the Earth
would appear full, and vice-versd ; when the Moon is in the

first quarter, the Earth would appear in the last quarter.

Owing, however, to twilight, the boundary of the Earth's

illuminated portion would not be so well defined as in the

case of the Moon ; there would be a gradual shading off from
light to darkness, extending over a belt of breadth 18° on
beyond the bright part. The entire absence of twilight on
the Moon is one of the strongest evidences against the exist-

ence of a lunar atmosphere similar to that of our Earth.

266. Appearance of Moon relative to the Horizon.—
"VYe are now in a position to represent, in a diagram, the
Moon's position and appearance relative to the horizon at a

given time of day and year when the Moon's age is given.

The ecliptic having been found, as explained in § 41,

the age of the Moon determines the Moon's elongation,

as in § 40. Measuring this angle along the ecliptic, we find

the Moon's position roughly ; for the Moon is never very far

from the ecliptic (<?/. § 40). The elongation also determines

the phase, and enables us to indicate the appearance of

the disc. The bright side or limb is always turned towards
the Sun. The cusps, therefore, point in the reverse direction,

and the line joining them is perpendicular to the ecliptic.

We can also trace the changes in the direction of the
Moon's horns relative to the horizon, between its time of

rising and setting.
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Take, for examplej the case when the Moon is a few (say

three) days old. The Moon is then a little cast of the Sun

;

therefore the bright limb is at the western side of the disc,

and the horns point eastward. Hence, at rising, the horns

are pointed downwards, and at setting they are pointed

upwards (Fig. 85).

"^ J) c r
Fig. 85. Fig. 86.

"When the Moon is waning, the reverse will be the case

(Pig 86).

267 Heights of Lunar Mouutaius.—We stated m
§ 264 that the Moon's surface is covered with mountains, and
that in consequence the bounding line between the illumi-

nated and dark portions of the disc is always jagged and
irregular ; while the mountains themselves throw their

shadows on the portions of the surface behind them. These
circumstances have led to the two following different ways
of measuring the height of the lunar mountains

First Method.—If a tower is standing in the middle

of, a perfectly level plain, it is evident from trigono'

metry that the length of the shadow, multiplied by the

tangent of the Sun's altitude, gives the height of the tower.

The same will be true in the case of the shadow cast by a

mountain, provided we measure the length of the shadow
from a point vertically underneath the summit. Now, in

the case of the Moon it is possible, from knowing the Moon's
age, to calculate exactly what would be the altitude of the
Sun as' it would be seen from any point of the lunar surface.

The apparent length of the shadows of the mountains can be
measured, in angular measure, by means of a micrometer;
from this their actual length can be calculated, allowance
being, of course, made for the fact that we are not looking
vertically down on the shadows, and hence they appear fore-

shortened. In this way. the height of the mountains can be
found.
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The principal disadvantage of this method is, that if the
surface of the Moon surrounding the mountain should be less

flat than it has been estimated, there will be a corresponding

error in the height of the mountain. In particular, it would
be impossible to apply the method to find the heights of

mountains closely crowded together.

268. Second Method.—In treating of the Earth in

§ 104, we showed that one effect of the dip of the horizon is

to accelerate the times of rising, and to retard the times of

setting of the Sun and stars. We also showed how to calcu-

late the amount of the acceleration if the dip be known.
Conversely, if the acceleration in the time of rising be known,
the dip of the horizon can be calculated, and from this the
height of the observer above the general level of the Earth
may be found.

Kow precisely the same method may be applied to measure
the heights of lunar mountains. When the Moon is waxing
the Sun is gradually rising over those parts of the Moon's
surface which are turned towards the Earth. The tops of

the mountains catch the rays before the lower parts, and,

therefore, stand out bright against the dark background of

the unilluminated parts below. Similarly, when the Moon
is waning, the summits of the mountains remain as bright

specks after the lower portions are plunged in shadow. By
noticing the exact instant at which the Sun's rays begin or

cease to illuminate the summit, this acceleration or retarda-

tion, due to dip, may be calculated, and the height of the
mountain determined.

If the Moon's surface around the mountain is fairly level,

the distance of the mountain from the illuminated portion at

the instant of disappearance determines the distance of the

visible horizon as seen from the mountain. This distance can
be calculated from measurements made with a micrometer
(proper allowance being made for foreshortening if the moun-
tain is not in the centre of the disc).

Hence the height iji) of the mountain may be calculated

by the formula of § 101 (i.), viz., h = d'^-j^a^ where d is the

estimated distance of the horizon, and a the Jifoon's radius.
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Section III.^—The Moon's Orbit and Rotation.

269. The Moon's Orbit about the Earth can be inves-

tigated by a method precisely similar to that employed in the

case of the Sun (see § 145). The Moon's R.A. and decl.

may be observed daily by the Transit Circle. The observed

decl. must be corrected for refraction and parallax (neither of

which affect the R.A., since the observations are made on the

meridian). "We thus find the positions of the Moon on the

celestial sphere relative to the Earth's centre for every day
at the instant of its transit across the meridian of the obser-

vatory,

Instead of observing the Moon's parallax daily, the Moon's
distances from the Earth's centre on different days, may be
compared by measuring the Moon's angular diameters, with

the heliometer. Hero, however, another correction for

parallax is required. Eor the observed angular diameters

are inversely proportional to the corresponding distances of

the Moon from the observer, and not from the cejitre of the

Earth.

This correction is by no means inconsiderable. Thus, for

example, if the Moon be vertically overhead, its distances from
the observer and from the Earth's centre will differ by the

Earth's radius, i.e., by about -^^ of the latter distance, and
its angular diameter will, therefore, be increased in the pro-

portion of about 60 to 59.

Having thus determined the direction and distance of the

Moon's centre, relative to the Earth's centre, for every day in

the month, the Moon's orbit may be traced out in just the same
way as the Sun's orbit was traced out in § 146. It is thus
found that the motion obeys approximately the following

laws ;

—

(i.) The Mooji's orbit lies in a plane through the Earth's

centre, inclined to the plane of the ecliptic at an angle of about
5° 8'.

(ii.) The orbit is an ellipse, having the EartVs centre in

one focus, the eccentricity of the ellipse being about —

.

18
(iii.) The radius vector joining the Earth's and Moon's

centres traces out equal areas in equal intervals of time.
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The period of revolution is, of course, the sidereal lunar

month, as defined in Section II., namely, about 27^ days.

The laws which govern the Moon's motion are thus iden-

tical with Kepler's laws for the Earth's orbital motion round

the Sun (§ 155).

270. The Eccentricity of the Moon's Orbit is found

by comparing the Moon's greatest and least distances, which
are inversely proportional to its least and greatest (geocentric)

angular diameters respectively. The latter are in the ratio

of about 17 to 19, and it is inferred that the eccentricity is

about (19-17)7(19 + 17), or ^V ipf- § 149).

The terms perigee, apogee, apse line are used in

the same sense as in § 147. Perigee and apogee are the

points in the orbit at which the Moon is nearest to and
furthest from the Earth respectively. Both are called the

apses or apsides, the line joining them being called the apse

line, apsidal line or line of apsides, according to choice. It is

the major axis of the orbit.

As in § 151, it follows that the Moon's angular motion in

its orbit is swiftest at perigee, and slowest at apogee.

271. Nodes.—The points in which the Moon's orbit, or its

projection on the celestial sphere, cuts the ecliptic are called

the Moon's Nodes {cf. § 40). The line joining them is

called the Nodal Line. It is the line of intersection of the

planes of the Moon's orbit and ecliptic. That node through
which the Moon passes in crossing from south to north of the
ecliptic is distinguished as the ascending node, the other is

distinguished as the descending node.

272. Perturbations.—Astheresultof observations extend-
ing over a large number of lunar months, it is found that the
Moon does not describe exactly the same ellipse over and
over again, and that, therefore, the laws stated in § 269 are

only approximate. The actual motion can, however, be
represented by supposing the Moon to revolve in an ellipse,

the positions and dimensions of which are very slowly vary-

ing. This mode of representing the motion may be illustrated

by imagining a bead to revolve on a smooth elliptic wire
which is very slowly moved about and deformed.
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The complete investigation of these small changes or

perturliations, as they are called, belongs to the domain of

Gravitational Astronomy. It will be necessary here to

enumerate the chief perturbations, on account of the important

part they play in determining the circumstances of eclipses.

273. Retrograde Motion ofthe Moon's Nodes.—The
Moon's nodes are not fixed, but have a retrograde motion
along the ecliptic of about 19° in a year. This phenomenon
closely resembles the retrograde motion of T (Precession,

§ 141), but is far more rapid. Its effect is to carry the line

of nodes, with the plane of the Moon's orbit, slowly round
the ecliptic, performing a complete revolution in 6793-391

days, or rather over 18-6 years.

One result of this nodal naotion is that the angle of inclination

of the Moon's orbit to the equator is subject to periodic
variations. When the Moon's ascending node coincides with the
first point of Aries, the angle between the Moon's orbit and the
equator will be the difference of the angles they make with the
ecliptic, i.e. about 23° 28' - 5° 8' or 18° 20'. When, on the contrary,

the ascending node coincides with the first point of Libra, the angle
between the orbit and the equator will be the sum of the^angles they
make with the ecliptic, i.e., 23° 28' + 5° 8' or 28° 36'. The period of
fl^uctuation is the time of revolution of the Moon's nodes relative to

the first point of Aries, and is a few days (nearly five) greater than
their sidereal period of revolution, on account of precession.

274. Progressive Motion of Apse Line.—The line of

apsides is not fixed, but has a direct motion in the plane
of the Moon's orbit, performing a complete revolution in
3232-575 days, or about nine years. A similar progressive

motion of the apse line of the Earth's orbit about the Sun
was mentioned in § 153. The latter motion is, however,
much less rapid, its period being about 108,000 years.

275. Other Perturbations.—The inclination of the
Moon's orbit to the ecliptic is not quite constant. It is

subject to small periodic variations, its greatest and least

values being 5° 13' and 5° 3'.

In addition there are variations in the eccentricity of the
orbit, in the rates of motion of the nodes, and in the length
•of the sidereal period. All of these render the accurate

investigation of the Moon's orbit one of the most complicated
problems of Astronomy.
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276. The Moon's Rotation.—It is a remarkable fact

that the Moon always turns the same side of its surface to the-

Earth. Whether we examine the markings on its surface

with the naked eye, or resolve them into mountains and
streaks with a telescope, they always appear very nearly the

same, although their illumination, of course, varies with the-

phase.

From this it is evident that the Moon rotates upon its axis

in the same " sidereal " period as it takes to describe its

orbit about the Earth, i.e., once in a sidereal month. It

might, at a first glance, appear as if the Moon had no rota-

tion, but such is not the case. To explain this, let us consider

the phenomena which would be presented to an observer if'

situated on the Moon in the centre of the portion turned

towards the Earth.

The Earth would always appear directly overhead, i.e., in

the observer's zenith. But as the Moon describes its orbit

about the Earth, the direction of the line joining the Earth
and Moon revolves through 360°, relative to the fixed stars,

in a sidereal month. Hence the direction of the observer's

zenith on the Moon must also revolve through 360° in a
sidereal month, and therefore the Moon must rotate on its-

axis in this period.

The Moon would be said to describe its orbit without

rotation, if the same points on its surface were to remain
always directed towards the same fixed stars. Were this the

case, different parts of the surface would become turned to-

wards the Earth as the Earth's direction changed, and this is

not what actually occurs.

It thus appears that, to an observer on the Moon, the

directions of the stars relative to the horizon would appear-

to revolve through 360° once in a sidereal lunar month.
Thus, the sidereal month is the period corresponding to the

sidereal day of an observer on the Earth. In a similar way,
the Sun's direction would appear to revolve through 360° in

a synodic month. This, therefore, is the period corresponding

to the solar day on the Earth, as is otherwise evident from
the fact that the Moon's phases determine the alternations of

light and darkness on the Moon's surface, and that they"

repeat themselves once in every synodic month.
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277. Librations of the Moon.—Libration in Lati-

tude.—If the axis about which the Moon rotates were per-

pendicular to the plane of the Moon's orbit, we should not be

able to see any of the surface beyond the two poles (i.e., ex-

tremities of the axis of rotation). In reality, however, the

Moon's axis, instead of being exactly perpendicular to its

orbit, is inclined at an angle of about 6^° to the perpendicular,

just as the Earth's axis of rotation makes an angle of about
23° 28' with a perpendicular to the ecliptic. The conse-

quence is that during the Moon's revolution the Moon's north

and south poles are alternately turned a little towards and a

little away from the Earth ; thus, in one part of the orbit we
see the Moon's surface to an angular distance of 6° 44' beyond
its north pole, in the opposite part we see 6° 44' beyond the

southpole. Thisphenomenon is calledthe Moon's libration in,

latitude. It makes the Moon's poles appear to nod, oscillat-

ing to and fro once in every revolution relative to the nodes.

Libration in latitude may be conveniently illustrated by
the corresponding phenomenon in the case of the Earth's

motion round the Sun, as represented in Eig. 56 (§ 154). At
the summer solstice the whole of the Arctic circle is illumi-

nated by the Sun's rays, and therefore an observer on the

Sun (if such could exist) would see the Earth's surface for a

distance of 23° 28' beyond the north pole. Similarly, at the

winter solstice an observer on the Sun would see the whole
of the Antarctic circle, and a portion of the Earth's surface

extending 23° 28' beyond the south pole.

278. Libration in Longitude.—Owing to the elliptical

form of the orbit, the Moon's angular velocity about the
Earth is not quite uniform, being least at apogee and greatest

at perigee. But the Moon rotates about its polar axis with
perfectly uniform angular velocity equal to the average

angular velocity of the orbital motion (so that the periods
of rotation and of orbital motion are equal).

Thus, at apogee the angular velocity of rotation is slightly

greater than that of the orbital motion, and is, therefore,

greater than that required to keep the same part of the
Moon's surface always turned towards the Earth. In con-

sequence, the Moon will appear to gradually turn round, so

as to show a little more of the eastern side of its surface.
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At perigee^ the angular velocity of rotation is less than

that of the orbital motion, and is, therefore, not quite suffi-

cient to keep the same part of the Moon's surface always
turned towards the Earth. In consequence we shall begin to

see a little further round the western side of the Moon's disc.

This phenomenon is called libration in longitude. Its

maximum amount is 7° 45' ; thus, during each revolution of

the Moon relative to the apse line, we alternately see 7° 45'

of arc further round the eastern and western sides of the disc

than we should otherwise.

279. Diurnal Libration.—The phenomenon known as

diurnal libration is really only an effect of parallax. If

the Moon were vertically overhead, and if we were to travel

eastwards, we should, of course, begin to see a little further

round the eastern side of the Moon's surface. If we were to

travel westwards we should begin to see a little further round

the western side. Now, the rotation of the Earth carries the

observer round from west to east. Hence, when the Moon is

rising wc see a little further round its western side, and
when setting we see a little further round its eastern side>

than we should from a point vertically underneath the Moon.
Similarly an observer in the northern hemisphere would

always see rather more of the Moon's northern portion, and

an observer in the southern hemisphere would see rather more
of the southern portion than an observer at the equator.

The greatest amount of the diurnal libration is equal to the

Moon's horizontal parallax, and is therefore about 57'. We
see 57' round the Moon's western corner when rising, and 57'

round the eastern corner when setting.

An observer at any given instant sees not quite half

(49-998 per cent.) the Moon's surface. The visible portion is

bounded by a cone through the observer's eye enveloping the

Moon, and is less than a hemisphere by a belt of breadth equal

to the Moon's angular semi-diameter, i.e., about 16'.

280. General Effects of Libration.—In consequence

of the three librations, about 59 per cent, of the Moon's sur-

face is visible from the Earth at some time or other, instead of

, rather under 50 (49*998) per cent., as would be the case if

there were no libration. At the same time only about 41 per

cent, of the surface is always visible from the Earth. The
remainder is sometimes visible, sometimes invisible.
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To an observer on the surl'ace of the Moon the result of libra-

tion in latitude and longitude would be that the Earth, instead

of remaining stationary in the sky, would appear to perform small

oscillations about its mean position. It would really appear to de-

scribe a series of ellipses. The motion of the different parts of the

Earth across its disc in the course of the Earth's diurnal revolution

would be the only phenomenon resulting from the cause which pro-

duces diurnal libration.

281. Metonic Cycle.—A problem of great historic interest in the
study of the lunar motions is the finding of a method of ready pre-

diction of the Moon's phases. From the earliest times there have
been religious festivals regulated (as Easter still is) by the Moon's
phases; but the direct calculation, from first principles, of the phase
for a given day would be long and tedious.

This difficulty was overcome by the discovery of the so-called

Metonic Cycle by Meton and Euctemon, B.C. 433. They found that

after a cycle of nineteen years the new and full Moons recurred on the
same days of the year. To show this it is necessary to prove that

nineteen years is nearly an exact multiple of the synodic month.
Now, 1 tropical year = 365-2422 days; .'. 19 years = 693960 days,

and 1 synodic month = 29"5306 days ; .'. 235months = 693969 days;
.*. 19 years differs from 235 lunations by "09 days, i.e., 2h. 10m. nearly»

If we define the Golden Number of a year as the remainder when
(1 + the number of the year a.d.) is divided by 19, and the Epact as
the Moon's age on the 1st of January, we see that two years which
have the same Golden Number have corresponding lunar phases on
the same days, and in particular have the same ejoact.

Hence, the Golden Number of the year 1 B.C. (which might be
more consistently called a.d.) is evidently 1 ; and it happens that
that year had new Moon on January 1, and, therefore, its epact is

zero. But twelve lunar months contain 354'37 days, and fall short

of the average year (365*25 days) by 10-88 days, which is nearly
|i lunations. Hence, the epact is greater by ^^ of a lunation each
year ; and since whole months are not counted in estimating the
Moon's age, it is (in months) the fractional part of

-|^{ Golden Number— 1} ;

or, in days, the remainder when 11 {Golden No. — l} is divided by 30.

Thus the Golden Number of 1892 is the remainder when 1893 ia

divided by 19, i.e., 12. Hence, the epact is the remainder when
11 {12 — 1} is divided by 30, i.e., 1; hence, the Moon is one day old

on January 1, 1892, and new on December 31, 1891.

In the epact, fractions of a day are never reckoned. Owing to

the extra day in leap year, the rule is sometimes a day wrong ; but
it is near enough for fixing the ecclesiastical calendar.
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282. Harvest Moon. — The full Moon whicli occurs

nearest the autumnal equinox is called the Harvest Moon.
Owing to the Moon's direct motion in its orbit the time of

moonrise always occurs later and later every day, but in the

case of the harvest Moon the daily retardation is less than
in the case of any other full Moon, as we shall now show.

To simplify our rough explanations we suppose the Moon to

be moving in the ecliptic.

The Moon's E.A. determines the time at which the Moon
crosses the meridian {cf. § 24). In consequence of the

orbital motion the R.A. increases continuously, just as in the

case of the Sun (§ 30), only the increase is more rapid (360°

per month instead of per year). Therefore the Moon transits

later and later every night.

AV^hen the Moon is in the first point of Aries it is passing

from south to north of the equator, and its declination is

increasing most rapidly. Now, the arg-uments of §§ 123-125
iire applicable to the Moon as well as the Sun, and they show
that, as the declination increases, there is, in north latitudes,

B. corresponding increase in the length of time that the

Moon is above the horizon. The effect of this increase is to

lengthen the interval from the Moon's rising to its transit

;

this lengthening tends to counterbalance, more or less, the

jetardation in the time of transit, thus reducing the retarda-

tion in the time of moonrise to a minimum.
Similarly it may be shown that whenever the Moon passes

the first point of Libra, the daily retardation of moonrise will

l)e a maximum, while that of the time of setting will be a

minimum. These phenomena, therefore, recur once each

lunar month.
I^ow, at harvest time the Sun is near £i ; hence, when the

Moon is near T it is full ; and the minimum retardation of the

Moon's rising, therefore, takes place at full Moon. And since

the Moon is then opposite the Sun, it rises at sunset. Both
these causes make the phenomenon more conspicuous in itself

than at other times, and as the continuance of light is useful

to the farmers when gathering in their harvest, the name
Harvest Moon has been applied.

At the following full Moon the phenomena are similar but
less marked. Eut as it is now the hunting season, the Moon
is called the " Hunter's Moon."
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EXAMPLES.—yill.

1. If a, a' be the true and apparent altitudes of a body affected

by parallax, prove the equation a, = a' ^-F cos a!

.

2. If the Sun's parallax be 8'80", find the Sun's distance.

3. If in our latitude, on March 21, the Moon is in its first quarter,

about what time may it be looked for on the meridian, and how
long does it remain above the horizon ?

4. Show that from a study of the Moon's phases we can infer the

Sun to be much more distant than the Moon. Prove that if the

synodic period were 30 days, and the Sun only twice as distant as

the Moon, the Moon would be dichotomized after only 5 days

instead of 7^.

5. Taking the usual values of the Sun's and the Moon's distances,

calculate, roughly, the mean value of the angle ESM when the Moon
is dichotomized.

6. Under what conditions is the line of cusps perpendicular to

the horizon ? Consider specially the appearance to an observer on
the Arctic circle.

7. There was an eclipse of the Moon on Jan. 28, 1888, central at

11.10 in the evening. What is the Moon's age on May 21 of that

year?

8. Find approximately the position and appearance of the Moon,
relatively to the horizon, in latitude 50° N., in the middle of Novem-
ber at 10 P.M., when it is ten days old

9. At a place in the temperate zone can the Sun or the Moon be
longer above the horizon ?

10. What would be the effect on the Harvest Moon (i.) if the
polar axis of the Earth were perpendicular to the ecliptic, or (ii.) if

the Moon were to move in the ecliptic ?
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EXAMINATION PAPER.—VIII.

1. What is parallax, and under what conditions is the pai'allax of
a heavenly body greatest ? Show by some simple illustrations that
as the distance of an object increases, its parallax lessens.

2. Prove the formula sin p = sin P sin z, where P is the Moon's
horizontal parallax, and p its parallax when its zenith distance
is z.

3. How is the distance of the Moon determined by observations
made in the plane of the meridian ? "Why cannot the Sun's parallax

be accurately determined in this way ?

4. Show that we can calculate the Moon's sidereal period given
its synodic period and the length of the year. Find it, given that
these are 29|- and 365j days respectively.

5. Describe the phases of the Moon, and find an expression for

the phase when the Moon is at a given elongation. Show how a»
observation of the Moon, when at its first quarter, would help us to

find the ratio of the distances of the Moon and the Sun.

6. Describe some methods for determining the heights of lunar
mountains.

7. Describe the phenomena of the Moon's motion. Given that

the Moon moves in a plane inclined at 5° to the ecliptic, find the
lowest north latitude of a place where the full Moon can never rise

at the summer solstice.

8. Explain (and illustrate by figures) how it is that we see more
than half the Moon's surface, and define the terms node, phase,

libration.

9. Describe the general appearance presented by the solar system
to an observer situated at the centre of the Moon's hemisphere
turned towards the Earth. When would the Earth be partially

eclipsed to such an obseirver ?

10. Explain the phenomenon called the Harvest Moon, and show
that from a similar cause the daily retardation in the sidereal time
of sunrise is least at the vernal equinox.



CHAPTER IX.

ECLIPSES. i^^

Sectiox I.— General Description of Eclipses.

283. Eclipses are of two kinds, lunar and solar. If at

full Moon the centres of the Sun, Earth, and Moon are very

nearly in a straight line, the !&arth, actiug as a screen, will

stop the Sun's rays from reaching the Moon, and the Moon
will, therefore, be either wholly or partially darkened. This

phenomenon is called a Lunar Eclipse.

On the other hand, if the three centres are nearly in a

straight line when the Moon is new, the Moon, by coming

between the Earth and the Sun, will cut off the whole or a

portion of the Sun's rays from certain parts of the Earth's

surface. In such parts the Earth will be darkened, and the

Sun will appear either wholly or partially hidden. Thisr

phenomenon is a Solar Eclipse.

If the 5iIoon were to move exactly in the ecliptic we
should have an eclipse of the Moon at every opposition, and

an eclipse of the Sun at every conjunction, for at either

epoch the centres of the Earth, Sun, and Moon would be in

an exact straight line. In consequence, however, of the

Moon's orbit being inclined to the ecliptic at an angle of

about 5J°, the Moon at " syzygy " (conjunction or opposition)

is generally so far on the north or south side of the ecliptic

that no eclipse takes jolace. An eclipse only occurs when
the Moon at syzygy is very near the ecliptic, and,

therefore, not far from the line of nodes (§ 271).

ASTRON. Q
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284. Different Kinds of Lunar Eclipse.—Eclipses of

tlie Moon are of two kinds, total and partial. Let S, E be

the centres of the Sun and Earth respectively. Draw the

common tangents ABFand A'B'Vio the two globes, meet-

ing on SE produced in V, and draw also the other pair of

tangents AB'K', ^'^^ cutting at U, between >S and^. If

the figure be supposed to revolve about SE, the tangents

will generate cones, enveloping the Sun and Earth, and

having their vertices at U and V. The space B VB', inside

the inner cone, is called the nmbra ; the space between the

inner and outer cone is called the penumbra.* The
character of the lunar eclipse will vary according to the

following conditions :

—

Fig. 87.

(i.) If at opposition, the Moon falls entirely within the

umbra or inner cone B VB', as at JiTj, no portion of the Moon's
surface then receives any direct rays from the Sun, and the

Moon is therefore plunged in darkness (except for the light

which reaches it after refraction by the Earth's atmosphere,

as explained in § 193). The eclipse is then said to be total.

(ii.) If the Moon falls partly within and partly without
the umbra B VB', as at Jl/^, the portion within the umbra
receives no light from the Sun, and is, therefore, obscured,

while the remaining portion receives light from part of the

Sun's surface about ^, and is, therefore, partially illuminated.

The eclipse is then said to be partial.

* For further description of the formation of the umbra and
penumbra, see Wallace Stewart's Text-Book of Light, § 5.
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(ili.) If the Moon falls entirely witWn the "penumbra,"

or outer cone, as at J/3, it receives the Sun's rays from A,
but not from A'. Therj is no true eclipse, but only a

diminution of brightness (sometimes called a ^^penumhral

A lunar eclipse is visible simultaneously from all places on

that hemisphere of the Earth over which the Moon is above

the horizon at the time of its occurrence.

^Near the boundary of the hemisphere there are two strips

in the form of lunes, comprising those places respectively at

which the Moon sets and rises during the eclipse ; at such

places only its beginning or end is seen.

285. Phenomena of a Total Hclipse of the Moon.—
As the Moon gradually moves towards opposition, the first

appearance noticeable is the slight darkening of the Moon's
surface as it enters the penumbra. This darkening increases

very gradually as the Moon approaches the umbra, or true

shadow. At "First Contact" a portion of the Moon
enters the umbra, and the eclipse is then seen as a partial

eclipse, the dark portion being bounded by the circular arc

formed by the boundary of the umbra. As the Moon
advances, the dark portion increases till the whole of the

Moon is within the umbra, and the eclipse is total. When
the Moon begins to emerge at the other side of the umbra,
the eclipse again becomes partial, and continues so until
" Last Contact," when the Moon has entirely emerged
from the umbra, after which the Moon gradually gets brighter

and brighter till it finally leaves the penumbra.
In the case of a partial eclipse, the umbra merely appears

to pass over a portion of the Moon's disc, which portion is

greatest at the middle of the eclipse.

286. Effects of Refraction on Lunar Eclipses.—In

§ 193 it was stated that, owing to atmospheric refraction, the
Moon's disc appears of a dull-red colour during the totality

of the eclipse. A still more curious phenomenon is noticed

when an eclipse occurs at sunset or sunrise. The refraction

at the horizon increases the apparent altitudes of the Sun and
Moon in the heavens, so that both appear above the horizon
when they are just below. Hence a total eclipse of the
Moon is sometimes seen when the Sun is shining.
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287. Different Kinds of Solar Eclipse.—An eclipse of

the Sun may be either total, annular, or partial. To
explain the difference between the first two kinds of eclipse,

let us suppose that the observer is situated exactly in the

line of centres of the Sun and new Moon, so that both bodies

appear in the same direction. Then, if the Moon's angular

diameter is greater than the Sun's, the whole of the Sun will

be concealed by the Moon ; the eclipse is then said to be

total. If, on the other hand, the Sun has the greater

angular diameter, the Moon will conceal only the central

portion of the Sun's disc, leaving a bright ring visible all

round ; under such circumstances, the eclipse is said to be

annular. Lastly, if the observer is not exactly in the line

of centres, the Moon may cover up a segment at one side of

the Sun's disc ; the eclipse is then partial.

Now, the Moon's angular diameter varies, according to the

distance of the Moon, from 28' 48" at apogee to 33'^ 22" at

perigee, the corresponding limits for the Sun's diameter being

31' 32" at apogee, and 32' 36" at perigee. Hence, both total

and annular eclipses of the Sun are possible. Thus, when
the Sun is in apogee and the Moon in perigee an eclipse must

be either total or partial ; when the Sun is in perigee and

the ]Moon in apogee, an eclipse must be annular or partial.

Fig. 88.

288. Circumstances of a Solar Eclipse.—Fig. 88

shows the different circumstances under which a solar eclipse

is seen from different parts of the Earth. Draw the common
tangents CBQ, C'L'Q, CRU, CRD to the Sun and Moon,

forming the enveloping cones LQD' {xnd fR^ ; these consti-

tute respectively the boundaries of the umbra and penumbra

of the Moon's shadow. Tirst let the umbra DQB' meet the

Earth's surface (-E'l) before coming to a point at Q, the curve
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of intersection "being de. Also let the penumbra fRg meet
tlie Earth's surface in the GmxGfg. Then from anyplace on

the Earth within the space de the Sun appears totally eclipsed.

At a place elsewhere within the penumbra^, the Sun appears

partially eclipsed, a portion only being obscured by the Moon.

;Next let the umbra DQB' come to a point Q before

reaching the Earth Ky Then, if the cone of the umbra be

produced to meet the Earth in d'e\ an observer anywhere
within the space d'e' sees the eclipse as an annular eclipse.

At any place elsewhere within the penumbra/'^', the eclipse

appears partial, as before. At parts of the Earth which fall

without the penumbra there is no eclipse. Hence a solar

eclipse is only visible over a part of the Earth's surface,

and its circumstances are different at different places.

As the Sun and Moon move forward in their relative orbits,

and the Earth revolves on its axis, the two cones of the

Moon's shadow travel over the Earth, and the eclipse becomes

visible from different places in succession. The inner cone

traces out on the Earth a very naiTow belt, over which
the eclipse is seen as a total or annular eclipse, according

to circumstances. The outer cone, or penumbra, sweeps out

a far broader belt, including that part of the Earth's surface

where the eclipse is visible as a partial eclipse.

A total or annular eclipse of the Sun, like a total eclipse

of the Moon, always begins and ends as a partial eclipse, the

totality or annular condition only lasting for a short period

about the middle of the eclipse. The maximum duration

of totality at the Equator is just under eight minutes.

In the case of an annular eclipse, there are two internal,

as well as two external, contacts, and the eclipse remains

annular during the interval between the internal contacts.

This may sometimes be rather more than twelve minutes.

Owing to the limited area of the belt over which a solar

eclipse is visible, the chance that any eclipse may be visible

at any given place is far smaller than in the case of a lunar

eclipse. The chance of an eclipse being total at any place is

very small indeed. The last eclipse visible as a total eclipse

in England occurred in 1724 ; the next will take place on
June 29th, 1927. One or more partial eclipses are visible at

Greenwich in nearly every year.
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SEcnoif IT.

—

Determination of the Frequency of Eclipses.

289. To rind the Limits of the Moon's geocentric
position consistent with a Solar or Lunar Eclipse.

In Fig. 89, let the plane of the paper represent any plane

throngh the Sun's and Moon's centres ; and let AB V and

^'^'F represent the common tangents bounding the cone of

the Earth's true shadow. Let A UB' be the other common
tangent, which goes (nearly) through B' ; and let the line 8E,
joining the centres of the Sun and Earth, meet the common
tangents in Fand U. Let T, t, f be those points onAB Fa:id

AB' whose distance from E is equal to that of the Moon.

Fig. 89.

Then, if M^, M^ denote the positions of the Moon's centre,

when touching the cone B V externally and internally at T,

it is evident that a lunar eclipse occurs whenever the full

Moon is nearer the line of centres than M^. Hence, if m
denote the Moon's angular semi-diameter TEM^, the Moon's
angular distance from ^Fmust be less than VEJI^, or VET-}- m.

Similarly, the lunar eclipse is total when the Moon is not

further from the line of centres than M.^ ; for this the Moon's
(geocentric) angular distance from the line of centres must
be not greater than VE3f^, or VET—m.

Let w?i, m^ be the centres of the Moon at internal and
external contact with ABrLeacr t. There is evidently a solar

eclipse visible at some point of the Earth's surface (such as

B) as a partial eclipse, if the Moon's angular distance from

the Sun is less than SEm^, or SEt+ m.

Supposing the Moon's distance to be such that its angular

radius is less than that of the Sun, there is an annular
eclipse whenever the Moon lies wholly within the cone A VA',

as at m^. This requires the Moon's geocentric angular dis-

tance from the Sun to be less than SEm.^, or SEt—m.
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If, however, the Moon is so near that its angular radius

is greater than that of the Sun, the angle it subtends is

greater than ABA', and therefore there is a total
eclipse at B whenever the edge of the Moon reaches the

internal tangent A'£. Taking m^ to represent the corre-

sponding position of the Moon when touching the other

tangent AB' at t' (for the sake of clearness in the figure)^

we see that, in order that there may be a total eclipse

somewhere on the Earth's surface, the geocentric angular
distance between the Moon's and Sun's centres must be less

than SFtn^ or SUt'+ m.

Now, as the cone A VA' tapers to a point at V, the breadth

of its cross section is greater near m^, m^, m^ than near M^, IL,
and when the Moon is in syzygy, its angular distance from EV
or ES = its latitude. Hence the limits of latitude are greater

for a solar than for a lunar eclipse, and therefore the proba-

bility of the occurrence of a solar eclipse is greater than the

probability of a lunar eclipse. This explains why, on the-

whole, solar eclipses are more frequent than lunar.

*290. We shall now calculate the angles VEM^, VEM,,
SEm^, SEdIc,, SEm^ Let^;, P denote the horizontal parallaxes

of the Moon and Sun respectively ; w, s their respective

angular semi-diameters (Pig. 89). AVe have s= Z 8EA,
p = A BTE = z BfE= z B't'E, P= z BAE= Z B'AE,

and m = Z 2EM, = z TE2I,^ = z tEm, = z tEni, = z i'Em,.

For the lunar eclipses we have, from the triangle TEA,
Z ETB-i- z EAB = 180°- z TEA = z VET+ z SEA

;

.-. /.VET= /LETB+ ^EAB- /.SEA=p + P-s-
.'. z VEM, = z VET+ z TE3I, = 2J+rs+m ;

and z VEM, = Z VET- z TEM, =2)+P—s-m ;

For the solar eclipses we have, from the triangle tEA^
Z EtB- z EAB = z tEA - ASEt- a SEA

.'. /.SEt= /.EtB- AEAB+ iSEA=zp^P^s.
.'. Z SEm^ = 2>—P+ s+ nij

and Z SEm.-^ = ^—jp -|-s—m.
Lastly, from the triangle t'EA wo have

Z EtB'- z EAB' = z AEt' = z AES+ Z SEt\
.-. /.SEt' =^ iB't'E-/.B'AE- zAES=p-P-s.

.'. z SEm^ = p~'P—s-\-m.
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[As an example, the student may show that the greatest

latitudes the Moon can have, in order that it may be partially

or wholly within the penumhra at opposition are p + s-j-I'-^m

audp-^s +F—m respectively.]

^'291. Greatest Latitudes of the Moon at Syzygy.—
Since S and V are in the ecliptic, it follows that when
the Moon is in conjunction or opposition, the plane of the
paper in Fig. 89 is perpendicular to the ecliptic. Therefore
the angles VJEM^, VEM^ measure the Moon's latitude at con-

junction, and SMn^, SUm^, SEm^ measure its latitude at

opposition in the positions represented. The above expres-

sions are, therefore, the greatest possible latitudes at syzygy
consistent with eclipses of the kinds named.
Now, taking the mean values we have, roughly,

5=16'; m=15'; p = 57' ; F=0'S".
Substituting these values, and collecting the results, we have,

roughly, the following limits for the Moon's geocentric lati-

tude, or angular distance from the line of centres :

—

(1) For a lunar eclipse, VFM^ =^+P— s-f-m = 56';

(2 ) For a total lunar eclipse, VFM.^ —p-\rF—8—m=26';
(3) For a solar eclipse, SFm^ z=. p —F+s+m = 88';

(4) For an annular eclipse, SFm^ =p—F+s—m = 58'.

Lastly, taking the Sun at apogee, and the Moon at perigee,

we have, m =17' and s =16' nearly, whence we have, in the
most favourable case,

(4a) For a total solar eclipse, SErn^ =p—F—8-^m= 58'.

292. Ecliptic Limits.—From the last results it appears
that a lunar eclipse cannot occur unless at the time of oppo-
sition the Moon's latitude is less than about 56', and that a
solar eclipse cannot occur unless at conjunction the Moon's
latitude is less than about 88'. Now the Moon's latitude

depends on its position in its orbit relatively to the line of

nodes ; hence there will be corresponding limits to the Moon's
distance from the node consistent with the occurrence of

eclipses. These limits are called the Ecliptic Limits.
*The ecliptic limits may be computed as follows :—Lot the

geocentric direction of the Moon's centre be represented on
the celestial sphere by M, Let iV represent the node, MH^a.
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Becondary to tlie ecliptic. [The ecliptic limit, strictly speak-

ing, means the limit of iVS" measured along the ecliptic, and

not that of NM.']
Now the limit of latitude MH has been calculated in the

last paragraph for the different cases. Let this be denoted by
/. Also let / be the inclination of the Moon's orbit to the

ecliptic. Then in the spherical triangle NSM, right-angled

at H^ we have SM= /, and z SNM= 7; both of these are

known, hence iVS can be calculated.

Fig. 90.

For rough purposes it will be sufficient either to treat the

small triangle HJ^Mas a plane triangle (Sph. Geom. 24), or

to regard MH as approximately the arc of a small circle,

whose pole is iV. The first method gives

Z = iV^tan7;
.-. iVS'= I cot /.

Or, adopting the second method, we have (Sph. Geom. 17)

I = MJI= z MNRx sin NH= I sin NH;
.-. siniV^=///,

whence the ecliptic limit iVJTis found.

Examples.

1. To find the Lunar Ecliptic Limit. For a lunar eclipse we have,

by § 291, I = 56'. Also, 1 = 5° roughly.

Hence sin NH = -^ = H, - -187,
5 X 60 300

= sin 11° (from table of natural smes)

and the lunar ecliptic limit is about 11°.

2, To find the Solar Ecliptic Limit. For a solar eclipse we have
I = 88'. Hence, taking I = 5° as before, we have

Bin NH =—^^ = -^ = -293, roughly,
5x60 300 ° ^'

= sin 17°, roughly,

and the solar ecliptic limit in about 17°.
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293. Major and Minor Ecliptic Limits.—Owing to

the yariations in the distances of the Sun and Moon their

parallaxes and angular semi-diameters are not quite constant.

Hence the exact limits of the Moon's latitude I, as calculated

by the method of ^ 291, are subject to small variations.

This alone would render the ecliptic limits variable. But
there is another cause of variation in the ecliptic limits,

arising from the fact that Z the inclination of the Moon's
orbit, is also variable, its greatest and least values being about
5° 19' and 4° 57'.

The greatest and least values of the limits for each kind of

eclipse are called the Major and Minor Ecliptic Limits.
For an eclipse of the Moon the major and minor ecliptic

limits have been calculated to be about 12° 5' and 9° 30' re-

spectively at the present time. For an eclipse of the Sun the
limits are 18° 31' and 15° 21' respectively.

Thus a lunar eclipse may take place if the Moon, when
full, is within 12° 5' of a node; and a lunar eclipse must
take place if the full Moon is within 9° 30' of a node.

Similarly, a solar eclipse may take place if the Moon, when
new, is within 18° 31', and a solar eclipse must take place if

the new Moon is within 15° 21' of a node.

The mean values of the lunar and solar ecliptic limits are

now 10° 47' and 16° 56'. P)ut the eccentricity of the Earth's

orbit is very slowly decreasing ; consequently the major limits

are smaller and the minor limits larger than they were, say,

a thousand years ago.

294. Synodic Revolution of the Moon's Uodes.—An
eclipse is thus only possible at a time when the Sun is within

a certain angular distance of the Moon's nodes. Hence the

period of revolution of the Moon's nodes, relative to the Sun,

marks the recurrence of the intervals of time during which
eclipses are possible. This period is called the period of a

synodic revolution of the nodes.
In § 273 it was stated that the Moon's nodes have a retro-

grade motion of about 19° per annum, more exactly 19° 21'.

In one vear (365d.) the Sun, therefore, separates from a node

by 360°+ 19° 21' or 379-35°, hence it separates 360° in

(36 X 365-})/379-35 days, or about 346-62d. This, then,

is the period of a synodic revolution of the node.
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In a sjmodic lunar month (29^ days), the Sun separates

from the line of nodes by an angle
379i°x29| -4-3651, or 30° 36',

a result which will be required in the next paragraph.

295. To find the Greatest and Least number of

Eclipses possible in a Year.—Let the circle in Fig. 9a

represent the ecliptic, and let iV, n be the Moon's nodes.

Take the arcs iVZ, iVZ', nl, nV each equal to the lunar eclip-

tic limit, and N8^ NS\ ns, ns each equal to the solar ecliptic

limit. Then the least value of SS' or ss is twice the minor

solar ecliptic limit, and is 30° 42', and this is greater than
30° 36', the distance traversed by the Sun relative to the

nodes between two new Moons. Hence, at least one new
Moon must occur while the Sun is travel-

ling over the arc SS\ and two may occur.

Therefore there must he one, and there may
he two eclipses of the Sun, tvhile the Sun
is in the neighhourhood of a node.

Again, the greatest value of LL, IV is

double the major lunar ecliptic limit, and

is, therefore, 24° 10'. This is consider-

ably less than the space passed over by
the Sun relative to the nodes between Fig 91.

two full Moons. Hence, there cannot

be more than one full Moon while the Sun is in the arc LL\
and there may be none. Therefore there cannot he more than

one eclipse of the Moon while the Sun is in the neighhourhood of

a node, and there may he none at all.

290. The case most favourable to the occurrence of

eclipses is that in which the Moon is new just after the Sun
has come within the solar ecliptic limits, i.e., near S. There

will then be an eclipse of the Sun,

When the Moon is full (about 14f days later) the Sun will

be near N, at a point within the lunar ecliptic limits ; there

will therefore be an eclipse of the Moon.

At the following new Moon the Sun will not have reached

S''j and there will be a second eclipse of the Sun.

In six lunations from the first eclipse the Sun will have
travelled through just over 180°, and will be within the space

ss\ near s ; there will therefore be a third eclipse of the Sun.
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At the next full Moon the Sun will be near n, and there

will be a second eclipse of the Moon.
The Sun may just fall within the space ss near «' at the

next new Moon ; there will then be Si fourth eclipse of the Sun.

In twelve lunations from the first eclipse, the Sun will

have described about 368°, and will, therefore, be about 8°

beyond its first position, and well within the limits ss ; there

will, therefore, be Oi fifth eclipse of the Sun.

About 14f days later, at full Moon, the Sun will be well
within the lunar ecliptic limits LL', and there will be a third

eclipse of the Moon.
All these eclipses occur in 12J lunations, i.e., 369 days, or

a year and four days. We cannot, therefore, have all the
eight eclipses in one year, but

There may le as many as seven eclipses in a year, namely,

either five solar and two lunar^ or fowr solar and three lunar.

297. The most unfavouraWe case is that in which the

Moon is full just before the Sun reachesthe ecliptic limits at L.
At new Moon the Sun will be near N, and there will be

one solar eclipse.

At the next full Moon the Sun will have passed X', so that

there will be no lunar eclipse. After

six lunations the Sun will not have
arrived at I.

At the next new Moon the Sun will

be within the ecliptic limits, and there

will be a second solar eclipse.

At the next full Moon the Sun will be
again just beyond V, and at 12 lunations

from first full Moon, the Sun may again ^ gg
not have quite reached L.

At 12^ lunations there will be a third solar eclipse.

The interval between the first and third eclipses will be 12

lunations, or about 354 days. If, therefore, the first eclipse

occurs after the 11th day of the year, i.e., January 11, the

third will not occur till the following year. Therefore,

The least possible numler of eclipses in a year is two. These

m\ist both be .solar eclipses.
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298. The Saros of the Chaldeans.—The period of a

synodic revolution of the nodes is (§ 294) approximately

346-62 days. Hence,

19 synodic revolutions of the node take 6585-78 days.

Also 223 lunar months = 6585-32 days.

It follows that after 6585^ days, or 18 years 11 days, the

Moon's nodes will have performed 19 revolutions relative to

the Sun, and the Moon will have performed 223 revolutions

almost exactly. Hence the Sun and Moon will occupy almost

exactly the same position relative to the nodes at the end of

this period as at the beginning, and eclipses will therefore

recur after this interval.

The period was discovered by observation by the Chaldean
astronomers, who called it the Saros. By a knowledge of it

they were usually able to predict eclipses. Indeed, in the

records of eclipses handed down to us in the form of cuneiform

inscriptions, they invariably stated whether the circumstances

accorded with prediction by the Saros or not.

A "synodic revolution of the Moon's apsides," or the

period in which the Sun performs a complete revolution

relative to the Moon's apse line, occupies 411-74 days.

Hence sixteen such revolutions occupy 6587-87 days, or

about two days longer than the Saros. Therefore the Moon's
line of apsides also returns to very nearly the same
position relative to the Sun and Moon. Hence, the
solar eclipses, as they recur, will be nearly of the same
kind (total or annular) in each Saros. The whole number
of eclipses in a Saros is about 70. The average of all

eclipses from B.C. 1207 to a.d. 2162 shows that there are

20 solar eclipses to 13 lunar.

The presentvalues of the mean solar and lunar ecliptic limits,
16° 56', and lO'^ 47', are in the ratio of 31 : 18 very nearly.

This ratio gives, on the whole, a higher average proportion

of solar eclipses to lunar than that given above. It must,
however, be remembered that all the angles used in calcu-

lating the limits are subject to gradual changes. Con-
sequently the numbers of eclipses in that period are subject to

very gradual variation ; after a large number of Saroses have
recurred, the order of eclipses in each will have changed.
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^Section III.— Occultations—Flaces at which a Solar Eclipse

is visible.

299. Occultations.—When the Moon's disc passes in front

of a star or planet, the Moon is said to occult it.

An occultation evidently takes place whenever the ap-
parent angular distance of the Moon's centre from the star

hecomes less than the Moon's angular semi-diameter. As the
apparent position of the Moon is affected by parallax, the cir-

cumstances of an occultation are different at different

places on the Earth's surface.

Let m denote Moon's angular semi-diameter, p its horizontal

parallax. In the figure, let E and M be the centres of the

Earth and Moon, and let sC, sC represent the parallel rays

coming from a star, and grazing the Moon's disc. These
rays cut the Earth's surface along a curve 00\ and it

is evident that only to observers at points within this curve

is the star hidden by the Moon's disc. Let JEC, Es, EM,
EC cut the Earth's surface in c, x^ m, c' ; the rays EC, EC
<;ut the Earth's surface in a small circle cc, whose angular
radius mEc ~ MEC — m. Let d be the geocentric angular
distance >S'^i¥' between the Moon's centre and the star.

Then the angle ECO = angle subtended by the Earth's

radius EO at C
;

= parallax of Cwhen viewed from 0;
= i;sin COZ{% 249);
= p sin OEx (by parallels).

But ECO = CEs
;

= angle subtended by ex
j

. ^ x;, angle ex
,*. sm OEx = —^

.
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Hence we have the following construction for the curve

separating those points on the Earth's surface at which the

occultation is visible at a given instant from those at which
the star is not occulted. Taking the sublunar point m as

pole, describe a circle ce on the terrestrial globe, with the

Moon's angular semi-diameter (m) as radius. Through the sub-

stellar point X draw any great circle, cuttinj^ this small circle

in any point c. Measure along it an arc c such that sin c

is always the same multiple f —
j
of mc. The locus of the

pointg 0, thus determined, is the curve required.

Half of the circle cc' consists of points under the advancing

limb of the Moon ; hence, over the portion of tlie curve 0'

corresponding to this half-circle, the occultation is just

beginning. At points on the other half of cc the Moon's
limb is receding ; hence over the other portion of 0' the

star is reappearing from behind the Moon's disc.

Since the greatest and least values of ex in any position

are d+ m and d — m, it is evident that the greatest value of d
for which an occultation can take is when

d—m=p; d=:m-^p.

300. Occultation of a Planet.—If s be a planet, the
lines -£*«, Os can no longer be regarded as rigorously parallel

;

but the angle between them, Us 0,

= angle subtended at s by the Earth's radius JEJO

= parallactic correction at (§ 248)

= F sin ZOs (§ 249) = P sin OFx very nearly.

As before, UCO = p sin OIJx. But UCO = i:sO+ CJEs
;

.-. 2) sin OFx = P sin OJEx+ cx-. sin OEx = -^^.
p—F

With this exception, the construction is the same as for a
star.

If the planet be so large that we must take account of its

angular diameter, the method of the next paragraph must be
used.
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301. Eclipse of the Sun.—There is a total eclipse of the
Sun, provided the Moon's disc completely covers the Sun's

;

this occurs if the Moon's angular semi-diameter (m) is larger

than the Sun's (s), and the apparent angular distance

between the Sun's and Moon's centres (as seen from any
point at which the eclipse is visible) is less than m — s.

Hence, if the Moon's angular semi-diameter were reduced
to m— s

J
the Sun's centre would then be occulted. Hence

the points 0, whose locus encloses the places from which
the eclipse is visible, can be found as follows :

—

With centre m the sublunar point, and angular radius

m—s, describe a circle. Through the subsolar point a; draw
any arc of a great circle xc, cutting the circle in ^, and
take 0, on xc produced, such that

sin xO =z
p-P

For an annular eclipse m < s, and the apparent angular
distance between the centres is s— m; hence the same con-

struction is followed, save that s— 7n is the angular radius of

the small circle first described. Tor a partial solar eclipse,

the angular radius is s+ m.

When a planet has a sensible disc, the beginning of its

occultation may be compared to a partial eclipse of the Sun

;

and the planet is entirely occulted when the conditions are

satisfied corresponding to those for a total eclipse.

Example.—Supposing the centres of the Earth, Moon, and Sun to

be in a straight line and the Moon's and Sun's semi-diameters to be
exactly 17' and 16', to find the angular radii of the circles on the
Earth over which the eclipse is total and partial respectively, taking
the relative horizontal parallax as 57'.

At those points at which the eclipse is total, the apparent angular
distance between the centres, as displaced by parallax, must be not
greater than 17' - 16', or 1', Hence, since the centres are in a line

with the Earth's centre, the parallactic displacement must be not
greater than 1'. Hence, if z be the Sun's zenith distance at the
boundary, then 57' sin z = V ; .'. sin z = -^, or approximately cir-

cular measure oi z = gV- But a radian contains about 57° ; .'. -gV of

a radian = 1° approx. Hence the eclipse is total over a circle of

angular radius 1° about the sub-solar point.

Similarly, the eclipse is partial if 57' sin a < 16' -I- 17', or 33', or

sin z < ff , or "58. From a table of natural sines, we find that

sin-' '58 = 35^° roughly ; therefore the angular radius is 35^°.
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Examples on Eclipses generally.

1. To find (roughly) the maximum duration of an eclipse of th&
Lloon, and the maximum duration of totality.

From § 291 we see that a lunar eclipse will continue as long as the
Moon's angular distance from the line of centres of the Earth and
Sun is less than 58', and the eclipse will continue total while the
angular distance is less than 26'. Hence, the maximum duration of
the eclipse is the time taken by the Moon to describe 2 x 58', or 116',

and the maximum duration of totality is the time taken to describe

2 X 26', or 52'.

Now the Moon describes 360° (relative to the direction of the Sun),

in the synodic month, 29 j days. Therefore, the times taken to

describe 116' and 52' respectively are

29V X 116 , 291 X 52 ,
and days,

360x60 360x60 ^

i.e. 31i. 48111. and 111. 42m.,

and these are the maximum durations of the eclipse and of totality.

The eclipse of Nov. 15, 1891, lasted 3h. 28m., and was total for Ih.23m.
2. To calculate roughly the velocity with which the Moon's

shadow travels over the Earth. (Sun's distance = 93,000,000 miles.)

The radius of the Moon's orbit being about 240,000 miles, its cir-

cumference is about 1,508,000 miles. Relative to the line of centres,

the Moon describes the circumference in a synodic month, i.e., about
29| days. Hence its relative velocity is about 1,508,000 -5- 295, or

51,000 miles per day, i.e., 2,100 miles per hour. If q denote the
point where the middle of the shadow reaches the Earth (Fig. 88)^
and if the Earth's surface at g is perpendicular to Sq, we have

velocity of q : vel. of M = Sq I 8M
= 93,000,000 : 93,000,000-240,000 = 1-0026 nearly.

Hence the velocity of the shadow at g = vel. of M very nearly
= 2,100 miles an hour.

To find the velocity of the shadow relative to places on the Earth,,

we must subtract the velocity of the Earth's diurnal motion. This,

at the Earth's equator, is about 1,040 miles an hour. Hence, if the
Earth's surface and the shadow are moving in the same direction,

the relative velocity is about 1,060 miles an hour.

3. To find the maximum duration of totality of the eclipse of
the example on page 234, neglecting the obliquity of the ecliptic.

The angular radius of the shadow being 1°, or about 69^ miles, its

diameter is 139 miles. The obliquity of the ecliptic being neglected,
the eclipse is central at a point on the equator, and the shadow and
the Earth are therefore moving in the same direction with relative
velocity 1,060 miles an hour (by Question 2). The greatest duration
of totality is the time taken by the shadow to travel over a distance
equal to its diameter, i.e., 139 miles, and is therefore 139 x 60/1060
minutes, i.e., 7*9 minutes (roughly).

ASTRON. £
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EXAMPLES.—IX.
1. If a total lunar eclipse occur at the summer solstice, and at

the middle of the eclipse the Moon is seen in the zenith, find the

latitude of the place of observation.

2. If there is a total eclipse of the Moon on March 21, will the

year be favourable for observing the phenomenon of the Harvest
Moon?

3. Having given the dimensions and distances of the Sun and Moon,
show how to find the diameter of the umbi-a where it meets the

Earth's surface.

4. Calculate (roughly) the totality of a solar eclipse, viewed from
the Equator at the Equinox, supposing

Moon's diameter 2,160 miles. Sun's diameter 400 times Moon's

;

Distance of Moon from Earth 222,000 miles

;

Distance of Sun from Earth 92,000,000 miles.

5. If S is the semi-diameter of the Sun, and p, P the horizontal

parallaxes of the Sun and the Moon at the time of a lunar eclipse, show
that to an observer on the Earth the angular radius of the Earth's

shadow at the distance of the Moon is P + p — S, and that of the
penumbra P + p + S. Determine, also, the length of the shadow.

6. If the distance of the Moon from the centre of the Earth is

taken to be 60 times the Earth's radius, the angular diameter of the

Sun to be half a degree, and the synodic period of the Sun and
Moon to be 30 days, show that the greatest time which can be
occupied by the centre of the Moon in passing through the umbra
of the Earth's shadow is about throe hours, and explain how thia

method might be employed to find the Sun's parallax.

7. If the distance of the Moon were diminished to 30 times the
Earth's radius, what would be the time occupied in passing through
the shadow ?

8. Determine what length of the axis of the Earth's shadow is

absolutely dark, having given that the horizontal refraction is about
35'; and account for the copper colour often seen on the Moon
when eclipsed.

9. What kind of eclipse is most suitable for the determination of

longitude, and why ?

10. What would be the greatest possible inclination of the plane
of the Moon's orbit to the ecliptic, that there might be a partial

eclipse at each conjunction ?

(The greatest distance of the Moon = 60 x Earth's radius.)
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EXAMINATION PAPEE.—IX.

1. What is the cause of eclipses of the Sun, and of the Moon ?

Why is a solar eclipse visible over so small a portion, and a lunar
eclipse over so large a portion of the Earth ?

2. Account for the phenomenon called a Lunar Eclipse. Show
that it begins and ends at the same instant at all places from which
it is visible.

3. Explain briefly the manner in which a solar eclipse passes over
the Earth.

4. Explain clearly how an annular eclipse of the Sun is produced.
Why are there no annular eclipses of the Moon ? Explain why
solar eclipses are sometimes total and sometimes annular.

5. Explain why, though there are, on the whole, more eclipses of

the Sun than of the Moon, many more of the latter than of the
former are visible at Greenwich.

6. Define uinbra and penumbra. Calculate the lengths of the
cones of shadow (umbra) cast by the Earth and Moon, and find the
breadth of the Earth's umbra at the distance of the Moon.

7. Define and roughly calculate the solar and lunar ecliptic limits.

What is the greatest number of lunar eclipses which can occur in a
year ? What is the least number of solar eclipses which can occur
in the same interval ?

8. What is the Saros ? State its length, and why it has to be
an exact multiple of the synodic period of the Moon and nearly
a multiple of that of the node.

9. Do occultations of a star by the Moon occur at the same
instant at all observatories ?

10. Show how to find at what point (if any) of the Earth's

surface a solar eclipse will be central.



CHAPTER X.

THE PLAKETS.

Section I.— General Outline of the Solar System.

302. The name planet, or "wanderer," was applied by
the Greeks to designate all those celestial bodies, except

comets and meteors, which changed their position relative to

the stars, independently of the diurnal motion ; these included

the Sun and Moon. At present, however, only those bodies

are called planets which move in orbits about the Sun. The
Sun itself is considered to be a star, while the Earth is

classed among the planets, and the Moon, which follows the

Earth in its annual path, and has an orbital motion about

the Earth, is described, along with similar bodies which

revolve about other planets, as a satellite or secondary.

303. The Sun, O, is distinguished by its immense size and

mass. It forms the centre of the solar system, for, in spite

of the great distances of some of the furthest planets, the

centre of mass of the whole system always lies very near the

Sun. The Sun resembles the other fixed stars in being self-

luminous.

Its diameter is 110 times that of the Earth, or nearly

twice as great as the diameter of the Moon's orbit about the

Earth.

From observing the apparent motion of the spots or cavities

which are usually seen on the Sun's disc, it is inferred that

the Sun rotates on its axis in the sidereal period of about

25 days.
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304. Bode's Law.—The distances of the planets from the

Sun have been observed to be approximately connected by a

lemarkable law known as Bode's Law. Tliis law is purely

empirical, that is, it is merely a result of observation, and it

has not as yet been proved to be a consequence of any known
physical principle. Moreover, it is only roughly true, giving,

as it does, a result far too great for the furthest planet

J^eptune.

The law is given by tlie following rule : Write down the

series of numbers

0, 3, 6, 12, 24, 48, 96, 192, 384,

each number (after the second) being double the previous one.

Now add 4 to every term ; thus we obtain

4, 7, 10, 16, 28, 52, 100, 196, 388.

These numbers represent fairly closely the relative distances

of the various planets from the Sun, the distance of the Earth
(the third in the series) being taken as 10.

The planets all revolve round the Sun in the same direction

as the Earth. Their motion is, therefore, direct.

305. Mercury, J , is the planet nearest the Sun, its dis-

tance on the above scale being represented by 4. It is

characterized by its small size, the great eccentricity of its

elliptical orbit, amounting to about -|-, and the great inclina-

tion of the orbit to the ecliptic, namely, about 7°. The
sidereal period of revolution round the Sun is about 88 of our
days.

Thus, Mercury's greatest and least distances from the Sun
are in the ratio of l + i

:
l_i. (c/ § 149),

or 3:2.
Professor Schiaparelli, of Milan, has found that Mercury

rotates on its axis once in a sidereal period of revolution

;

consequently it always turns nearly the same face to the
Sun, like the Moon does to the Earth (§ 276).

Owing, however, to the great eccentricity of the orbit, the
^'libration in longitude " is much greater than that of the
Moon, amounting to 47°. Consequently, rather over one

quarter of the whole surface is turned alternately towards
and away from the Sun, three-eighths is always illuminated,
and three-eighths is always dark.
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306. Venus, ? , is the next planet, its mean distance

from the Sun being represented by about 7 (really 7-2). Its

orbit is very nearly circular, and is inclined to the ecliptic at

an angle of about 3° 23'.

Venus revolves about the Sun in a period of 224 days.

307. The Earth, 0, comesnext, itsmeandistance being re-

])reseuted by 10, audits orbit very nearly circular (eccentricity

=
-g^o).

Its period of revolution in the ecliptic is 365^ days,

and its period of rotation is a sidereal day, or 23h. 56m. mean
time. It is the nearest planet to the Sun having a satellite

(the Moon, ([ ), which revolves about it in 27^ days.

308. Mars, c^, is at a mean distance represented roughly
by 16, or more accurately by 15-2. Its orbit is inclined at

less than 2° to the ecliptic, and is an ellipse of eccentricity

about y'j. It revolves about the Sun in a sidereal period of

about 686 days, and rotates on its axis in about 24h. 37m.
Mars has two very small satellites, which revolve about it

in the periods 7|- and 30^ hours, roughly. The appearance
which would be presented by the inner satellite, if observed

from Mars, is rather interesting. As it revolves much faster

than Mars, it would be seen to rise in the west and set in the

cast twice during the night. The outer satellite would appear

to revolve slowly in the opposite direction—from east to west.

The inner satellite is eclipsed often at opposition, and would
appear to transit the Sun's disc often at conjunction.

309. The Asteroids.— The next conspicuous planet,

Jupiter, is at a distance represented by 52 ; but, according

to Bode's law, there should be a planet at the distance 28. It

was for a long time thought that no planet existed at this

distance, but the gap was filled, at the beginning of the cen-

tury, by the discovery of a number of small planets, to which
tlie name of Asteroids, or Minor Planets, was given.

Since that time a few new asteroids have been discovered

almost every year, the total number found up to October 15,

1891, being 321. It is probable that this number- will be
\'ery largely increased by stellar photography.

The largest asteroid, Vesta, is just visible to the naked
eye when in opposition ; and the length of its diameter is
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between *! and '2 of that of the Moon. Among the others

Juno, Ceres, Pallas, and Astraea are the most con-

spicuous telescopic objects. Many of the smaller asteroids

are less than ten miles in diameter, and are probably simply

masses of rock flying round and round the Sun.

The periodic times of revolution of the asteroids vary con-

siderably, but their average is about 1,600 days. The orbits

are in many cases very oval, the eccentricity of one {Poly-

hymnia) being over i, and they are often inclined at consider-

able angles to the ecliptic, the inclination in the case of Pallas

amounting to nearly 35°, while that of Juno is 13°.

The planets outside the asteroid belt are distinguished from
those hitherto described by their far greater dimensions and
masses, and by their smaller densities. In this respect they
resemble the Sun. They are also supposed to be at high
temperatures, though not hot enough to emit light.

'310, Jupiter, 7/, is at a mean distance almost exactly re-

presented by 52. It revolves round the Sun in a period of

twelve years, in an orbit nearly circular and inclined at only

1|° to the ecliptic.

The diameter of Jupiter is about eleven times that of the

Earth, and through a telescope the disc is seen to be encircled

with a series of belts or streaks parallel to its equator. On
account of their variability, these are supposed to be due to

belts of clouds in the atmosphere of the planet.

.

Jupiter is now known to have five satellites. The four

outer ones are interesting as being the first celestial bodies

discovered with the telescope by its inventor Galileo (a.d.

1610). A fairly powerful opera glass will just show them.
The outermost of all revolves in an ellipse of considerable

eccentricity inclined to the ecliptic ] lane at about 8°, its

period being about lOd. 17h. The three next revolve in

orbits nearly circular, and in the ecliptic, in periods of 7d, 4h,,

3d. 13ih._, and Id. ISfh. The fifth or innermost satellite

has only just been discovered (1892) by Mr. Barnard with
the great Lick telescope ; it revolves in a period of nearly

I2h., at a mean distance of 70,000 miles from the surface, or

113,000 miles from the centre of Jupiter. Jupiter's satellites

are frecjuently ecli2}sed by passing into the shadow cast by Jupi-

ter, or occulted when Jupiter comes between them and the Earth.
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311. Saturn, Tj , is at a mean distance from the Sun of 95^,
taking the Earth's distance as 10. This is rather less than
the distance given by Bode's Law. The periodic time of revo-
lution is 29^ years. The orbit is nearly circular, and inclined

to the ecliptic at an angle of 2|°.

Saturn^s rings are among the most vronderful objects

revealed by the telescope. They appear to be three flat

annular discs of extreme thinness, lying in a plane inclined

to the ecliptic at an angle of about 28°, and extending to a
distance rather greater than the radius of the planet ; the
middle ring is by far the brightest, while the inner ring is

very faint. When the Earth is in the plane of the rings they
are seen edgewise, and, owing to their very small thickness,

they then become invisible except in the best telescopes.

It is probable that the rings consist of a large number of

small satellites or meteors. It is certain that they do not
consist of a continuous mass of solid or liquid matter. Tte
surface of the planet itself is encircled with belts similar to

those on Jupiter.

In addition to the rings, Saturn has at least eight satellites,

all situated outside the rings. The seven nearest move in

planes nearly coinciding with that of the rings, while the

orbit of the eighth is inclined to it at an angle of 10°. The
sixth satellite is by far the largest, having a probable dia-

meter not far short of that of the planet Mars. The seventh

has been observed, like our moon, always to turn the same
side towards the planet. The distances of the satellites from
Saturn range from 3 to 60 times the planet's semi-diameter,

and the corresponding periods range from 22^ h. to 79 d.

312. Uranus, ^, at mean distance 192, revolves in an
approximately circular orbit, nearly coinciding with the

ecliptic, in a period of 84 years. It was discovered in 1781
by Sir William Herschel, who named it the Georgnim Sidus

in honour of the king.

Uranus is attended by four satellites at least, and these

possess the remarkable peculiarity of revolving in a plane

nearly perpendicular to the ecliptic and in a retrograde

direction. In fact, the plane of their orbits makes an angle

of 82° with the ecliptic. Their periods are 2id., 4d., 8^d.,

and 13jd. roughly.
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313. Neptune, ^.—The position of this planet was pre-

dicted in 1846 almost simultaneously by Adams and Leverrier,

from the observed effects of its attraction on the orbital

notion of Uranus. It was first actually seen by Galle, of

Berlin, in September, 1846, very close to the position which
had been computed beforehand. It has a mean distance

300 (being considerably less than that which it would have
according to Bode's Law), and it revolves in its orbit in about
164 years.

Keptune has one satellite moving in a retrograde direction

in a plane inclined to the ecliptic at about 35°.

The discovery of ]N"eptune will be treated more fully in the

chapter on Perturbations.

314. Tabular View of the Solar System.—For con-

venient reference, the mean distances of the planets, measured
iQ terms of the Earth's mean distance as the unit, and their

periodic times, are given below, together with the inclina-

tions and eccentricities of the orbits, and the numbers of

their satellites.

Name of
Planet.

Mean Dist.
of Planet.

Mean Dist.

of Earth.

Periodic Time.
Inclination
of Orbit.

Eccen-
tricity

of
Orbit.

No. of
Satel-

lites.

days == years

Mercury, $ 0-38 88 0-2-1 7 -208 —
Venus, ? 0-72 224 0-62 3 23 •007 —
Earth, e 100 365 100 •017 1

Jlars, c? 1-52 687 1-88 1 51 •093 2

Ceres, © 2-77 1,681 4-60 10 37 •076 —
Japiter, n 5-20 4,332 11-86 1 19 •048 5

Saturn, h 9-54 10,759 29-46 2 30 •056 1 8&3
(
rings

Uranus, y 19-18 30,687 8402 46 •046 4

Neptune, ^ 3005 60,181 164-78 1 47 •009 1



244 ASTEONOMY.

Section 11.

—

Synodic and Sidereal Periods—Description of
Motion in Elongation of Planets as seen from the Earth—

Phases.

315. Inferior and Superior Planets.—Definitions.
—In describing the motions of the planets relative to the

Earth, it is convenient to divide the planets into two classes,

inferior and superior planets.

An inferior planet is one which is nearer to the Sun than,

the Earth ; Mercury and Venus are the two inferior planets.

A superior planet is one which is further from the Sun
than the Earth : all the planets except Mercury and Yenus
are superior.

The angle of elongation is the difference between the

geocentric (§156) longitude of the planet and that of the

Sun. It has the same meaning as in the case of the Moon
(§259).
We shall now describe the changes in elongation of the

inferior and superior planets, as seen from the Earth. It

appears from the preceding section that

(i.) The planets all revolve round the Sun in the same
direction

;

(ii.) The planets which are nearer the Sun travel at a

greater speed than those which are more remote.

The second fact can be easily verified from comparing the

distances and periods of the planets given in the previous

section. Even if we take into account the fact that the more
distant ones have further to travel, we shall still find that

Ihey take longer to travel over the same distance.

In order to further simplify the descriptions we shall

assume, that the planets all revolve uniformly in circles, about

the Sun as centre, in the plane of the ecliptic. These
assumptions are only roughly true, on account of the small

eccentricities of the orbits and their small inclinations to

the ecliptic ; hence our results will only agree roughly with
observation.

316. Changes in Elongation of an Inferior Planet.
—Let ^be the Earth, Fan inferior planet moving in the orbit

ATJBTJ' about S the Sun. Since aSF revolves more rapidly

about S than SE^ the motion of F relative to E^ as it would
appear from S, is direct.
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S V separates from SE at a rate which is the difference

of the rates at which F, V revolve in their orbits. The

changes in the positions of the planet relative to the Sun

are therefore the same as if E were at rest and V re-

volved with an angular velocity equal to the excess of the

angular velocity of the planet over that of the Earth.

Fig. 94.

Let the line ES meet the orbit of V mA and B. When
Fis at ^ or i^ it has the same longitude as S, and if the

planet actually moved in the ecliptic it would be in front of

the Sun at A, behind the Sun at B. In reality, owing

to the inclination of the orbits, this but rarely happens.

At A, the planet is said to be in inferior conjunction
with the Sun ; it has the same longitude and is nearer the

Earth. At B the planet is said to be in superior conjunc-
tion with the Sun ; it has the same longitude but is further

away. If we consider the appearances which would be pre-

sented on the Sun, the planet is in " heliocentric conjunction "

with the Earth at A and in " heliocentric opposition" at B.
After inferior conjunction at A^ the pianet is seen on the

westward side of the Sun, as at Fj. The elongation SEV
gradually increases till the planet reaches a point C^such
that EUis a tangent to the orbit. The planet is then at its

greatest elongation, the angle SEU heing a maximum.
Subsequently, as at T\, the elongation diminishes, and the

planet approaches the Sun, until superior conjunction occurs,

as at B. The planet then separates from the Sun, reappear-
ing on the opposite (eastern) side, as at V.^, attains its maxi-
mum elongation at V, and finally comes round again to

inferior conjunction at A.
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The time between two consecutive conjunctions of the

same kind (superior or inferior) is called the synodic period
of the planet {cf, § 259), and is the penod In'wIiicE
iSr separates from ySjE" through 360°.

317. To find (roughly) the Ratio of the Distance
from the Sun of an Inferior Planet to that of the
Earth, it is only necessary to observe the planet's greatest

elongation. For if TJ^ IE (Fig. 95) represent the planet and
Earth at the instant of greatest elongation, the angle EJJB> is

a right angle, and therefore

that is,

Distance of planet . - x . ,-—

—

-^——- = sine of greatest elongation.
Distance of Earth

This method is, however, much modified by the fact that
the real orbits are not circles, but ellipses.

Example 1.—Given that the greatest elongation of Yenus is 45^,

6nd its distance from the Sun, that of the Earth being 93,000,000
miles.

Here distance of Venus = 93,000,000 sin 45° = 93,000,000 x a/i •

= 93,000,000 X -Voyil = 65,760,000 miles.

Example 2.—Taking the Earth's distance as unity, to find the
distance of Mercury, having given that Mercury's greatest elonga-
tion is 22f.
The distance of Mercury = Ixsin 22|° = ^{|(l-cos 45°)}

= 1a/(2-^/2) = •38268.
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318. Changes in Elongation of a Superior Planet.—
Let us now compare the apparent motion of the superior planet

J" with that of Sun. Since it revolves about the Sun in the

same direction as the Earth does, but more slowly, the line

^f/will move, relative to SE^ in the opposite or retrograde

direction. Hence, in considering the changes in the position

of the planet relative to the Sun, we may regard SE as a

fixed line, and J must then revolve about S in the cii'cle

ARBTwiih. a retrograde motion, i.e., in the same direction

as the hands of a watch.*
At A the planet is in opposition with the Sun, and its

elongation is 180°. At ^ it is in conjunction, and its

elongation is 0°. If, however, we were to refer the directions

of the Earth and planet to the Sun, the planet would be in

heliocentric conjunction with the Earth at A^ and in helio-

centric opposition at B.
The planet is nearest the Earth at A, and since its orbital

velocity is constant, its relative angular velocity is then
greatest, and the elongation SEJ is decreasing at its most
rapid rate. As the planet moves round from opposition A to

conjunction B, the elongation SET decreases continuously
from 180° to 0'.

At R the elongation is 90°, and the planet is said to be in

quadrature.

* As a simple illustration, both the hour and minute hands of a
watch revolve in the same directions, but the minute hand goes
faster and leaves the hour hand behind. Hence the hour hand
separates from the minute hand in the opposite direction to that in.

which both are moving:.



248 ASTliONOMr.

At conjunction, B, the elongation is 0° ; and we may also

consider it to be 360°. As the planet revolves from B to A,
the elongation (measured round in the direction BRA) de-

creases from 360° to 180°.

At T the elongation is 270°, and the planet is again said

to be in quadrature.

At A the elongation is again 180°, the planet being once

more in opposition. After this the elongation decreases from
1 80"^ to 0° as before, as the planet's relative position changes

from A through R to B.
The cycle of changes recurs in the synodic period, i.e.,

the period between two successive conjunctions or oppositions.

"VVe see that the elongation decreases continually from 360°

to 0° as the planet revolves from conjunction round to con-

junction, and there is no greatest elongation.

Fig. 97.

319. To compare (roughly) the Distance of a
Superior Planet with that of the Earth.—Here there

is no greatest elongation, and therefore we must resort to

another method.
Let the planet's elongation SJEJ (Fig. 97) be observed at

any instant, the interval of time which has elapsed since the

l)lanet Avas in opposition being also observed. Let this

interval be t, and let S denote the length of the planet's

synodic period. Then, in time S the angle JSE increases

from 0° to 360° ; therefore, if we assume the change to take

place uniformly, the angle JSE at time t after conjunction

is = 360° X tjS.
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Hence, JSE is known. Also JES has been observed, and

SJE (= ISO""-JES-JSE) is therefore also known.

Therefore we have, by plane trigonometry,

Distance of Planet _ :^ _ sin SEJ
Distance of Earth SE sin SJe'

•which determines the ratio of the distances required.

This method is also applicable to the inferior planets. It

is, however, not exact, owing to the fact that the planetary

motions are not really uniform (see § 327).

*320. It is not necessary to observe the instant of conjunction or

opposition. If 8 is known, two observations of the elongation and
the elapsed time are sufficient to determine the ratio of the distances.

The requisite formulae are more complicated, but they only involve

plane trigonometry. We, therefore, leave their investigation as an
€xercise to the more advanced student.

Example.—To calculate the distance of Saturn in terms of that

of the Eai'th, having given that 94 days after opposition the elonga-

tion of Saturn was S-i" 17', and that the synodic period is 376 days.

Given also tan 5° 43' = -1.

Let the Sun, Earth, and Saturn be denoted by S, E, J. In 376
days Z JSE increases from 0^ to 360°.

.*. in 94 days after opposition Z JSE = OC;

also, by hypothesis, Z JES = 84° 17'.

. Distance of Saturn SJ
Distance of Earth SE

tan SEJ = tan 84° 17'

= cot 5° 43' = ~ = 10.

Therefore the distance of Saturn, as calculated from the given
data is 10 times that of the Earth.

321. The synodic period of an inferior planet may
be found very readily by determining the time between two
transits of the planet across the Sun's disc and counting the

number of revolutions in the interval.

For a superior planet this is not possible, and we
must, instead, find the interval between two epochs at which
the planet has the same elongation.
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322. Relations between the Synodic and Sidereal
Periods.—The relation between the synodic and sidereal

periods is almost exactly the same as in the case of the Moon,
the only difference being that the planets revolve about the
Sun and not about the Earth.

The sidereal period of a planet is the time of the planet's

revolution in its orbit about the Sun relative to the stars.

The synodic period is the interval between two conjunc-
tions with the Earth relative to the Sun. It is the time in

which the planet makes one whole revolution as compared
with the line joining the Earth to the Sun.

Let S be the planet's synodic period,

P its sidereal period,

Fthe length of a year, that is, the Earth's sidereal period,
all the periods being supposed measured in days.

Then, in one day,

the angle described by the planet about the Sun = 360'^/P,
the angle described by the Earth = 360°/ F,
and the angle through which their heliocentric

directions have separated = 3607>S.

If the planet be inferior, it revolves more rapidly
than the Earth, and 360°/'S^ represents the angle gained by
the planet in one day.

360^ _ 360° _ 360°
•••

s ~ F r '

or i = Jl - -1
s r r .(i.).

If the planet be superior, it revolves more slowly
than the Earth, and 360°/iS is the angle gained by the ^arih
in one day.

^

360° _ 360° 360°
•• S ~ Y ~~P"*

or Jl=J:.-JL.
s 1 r

From these relations, the sidereal period can be found if

the synodic period is known, and vice versa.
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323. Phases of the Planets.—As the planets derive

their light from the Sun, they must, like the Moon, pass

through different phases depending on the proportion of their

illuminated surface which is turned towards the Earth.

Phases of an Inferior Planet.—An inferior planet V
will evidently be new at inferior conjunction A, dichotomized
like the Moon at its third quarter at greatest elongation Uy

full at superior conjunction^, dichotomised like the Moon at

first quarter when it again comes to greatest elongation at

U'. Thus, like the Moon, it will undergo all the possible

different phases in the course of a synodic revolution.

There is, however, one important difference. As the

planet revolves from A to B its distance from the Earth
increases, and its angular diameter therefore decreases. Thus
the planet appears largest when new and smallest when full,

and the variations in the planet's brightness due to the differ-

ences of phase are, to a great extent, counterbalanced by the
changes in the planet's distance. Eor this reason, Yenus
alters very little in its brightness (as seen by the naked eye)

during the course of its synodical revolution.

Fm. 98.

The phase is determined by the angle 8 VB, and this is

the angle of elongation of the Earth as it would appear from
the planfet. The illuminated portion of the visible surface

of the planet at F is proportional to IS0°— SVSJ, and the

proportion of the apparent area of the disc which is illumi-

nated varies as 1 + cos SVH or 2 cos^ ^ SVE. ( C/. § 263).

The phases of Yenus are easily seen through a telescope.
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324. Phases of a Superior Planet.—For ^ superior

planet J tlie angle SJE never exceeds a certain value. It is

greatest wlien SEJ— 90°, being then tlie greatest elongation

of tlie Eartn as it would appear from the planet. Hence the

])lanet is always nearly full, being only slightly gibbous, and
the phase is most marked at quadrature.

The gibbosity of Mars, though small, is readily visible at

quadrature, about one-eighth of the planet's disc being
obscured. The other superior planets are, however, at a

distance from the Sun so much greater than that of the Earth
that they always appear very approximately full.

325. The " Phases " of Saturn's Rings are due to an entirely

different cause. The plane of the rings, like the plane of the Earth's
equator, is fixed in direction, and inclined to the ecliptic at an angle
of about 28°. Hence, during the course of the planet's sidereal

revolution, the Sun passes alternately to the north and south side?

of the rings (just as in the phenomena of the seasons on our Earth,
the Sun is alternately N. and S. of the equator). The Earth, -whrch,

relatively to Saturn, is a small distance from the Sun, also passes
alternately to the north and south sides of the rings, and we see the
rings first on one side and then on the -other. At the instant of

transition the rings are seen edgewise, and are almost invisible.

Unless Saturn is in opposition at this instant, the Sun and Earth
do not cross the plane of the rings simultaneously, and between
their passages there is a short interval during which the Sun and
Earth are on opposite sides of the plane ; and the U7iilluminated
side of the rings is turned towards the Earth. The last "dis-
appearances " of the rings occurred in Sept., 1891—May, 1892, but
they occur twice in each sidereal period, or once about every 15 years.

Other interesting appearances are presented by the shadows
thrown by the planet on the rings and by the rings oi^ the planet.
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Section III.

—

Kepler^s Laws of Planetary Motion.

326. Kepler's Three Laws.— We have .already seen

iihat the orbits of most of the planets are nearly circular, their

distances from the ^Sun being nearly constant and their

motions being nearly uniform. A far closer approximation
to the truth is the hypothesis held for a long time by Tycho
Brahe and other astronomers, namely, that each planet re-

volved in a circle whose centre was at a small distance from
the Sun, -and described equal angles in equal intervals of

time about a point found by drawing a straight line from the

Sun's centre to the centre of the circle and producing it for

an equal distance beyond the latter point.

The true laws which govern the motion of the planets were
discovered by the Danish astronomer Kepler, in connection

with-his great work on the planet Mars {De Ifotihus Stellae

Martis). After nine years' incessant labour the first and second

of the following laws were discovered, and shortly afterwards

the third.

I. Every planet moves in an ellipse, with the Sun
in one of the foci.

II. The straight line drawn from the centre of

the Sun to the centre of the planet (the planet's

"radius vector") sweeps oat equal areas in equal

times.

III. The squares of the periodic times of the

several planets are proportional to the cubes of their

mean distances from the Sun.

These laws are known as Kepler's Three Laws. We
have already proved that the first two laws hold in the

case of the Earth. The third law is also found to hold good
for the Earth as well as the other planets, and this fact alone

.affords strong evidence that the Earth is a planet
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By the mean distance of a planet is meant the arith-

metic mean between the planet's greatest and least dis-

tances from the Sun. If ^, a (Fig. 100) be the planet's

positions at perihelion and aphelion {i.e., when nearest and
furthest from the Sun respectively), the planet's mean
distance = \{Sp-\- So) := \pa =^\{mix]ov axis of ellipse

described) (§ 147).

The periodic times are, of course, the sidereal periods.

Hence the third law is a relation between the sidereal periods

and the major axes of the orbits.

Fig. 100.

327. Verification of Kepler's Pirst and Second
Laws.—We will now roughly sketch the principle of the
methods by which Kepler determined the orbit of Mars, and
thus proved his Eirst and Second Laws. A verification of

the laws in the case of the Earth has already been given, and
we have shown (§ 145) how to determine exactly the position

of the Earth at any given time ; we may regard this, there-

fore, as known. We may also suppose the length of the
sidereal period of Mars to be known, for the average length of

the synodic period may be found, as in § 261, and the sidereal

period may be deduced by the formulae of § 322.

Let the direction of the planet be observed when it is at

any point 31 in its orbit, the Earth's position being U. When
the planet has returned again to J/after a sidereal revolution,,

the Earth will not have returned to the same place in it^
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orbit, but will be in a differont position, say F. Let now
the planet's new direction FM be observed.*

From knowing the Earth's motion, we know SF^ SF and
the angle FSF. From the observations of the two directions

of Jfwe know the angles SFM and SFIf. These data arc

sufficient to enable us to solve the quadrilateral SFJfFA

Fig. 101.

We can thus determine SM and the angle ESIT, whence
the distance and direction of M from the Sun are found.

Similarly, any other position of Mars in its orbit can be found

by two observations of the planet's sidereal period separated

by the interval of the planet's sidereal revolution. In

this way, by a series of observations of Mars, extending ovei

two sidereal periods, the planet's direction and distance

relative to the Sun can be determined daily, and the whole
orbit can thus be plotted out.

This method was that actually adopted by Kepler, except that he
had not previously determined the Earth's motion, and believed that

it could be accurately represented by Tycho Brahe's hypothesis.

This approximation was close enough, for the Earth's orbit is very
nearly a circle, and that of Mars, which he was deducing, is very
much more eccentric.

* For simplicity we suppose Mars to move in the ecliptic plane.

The methods require some modification when the inclination of the

orbits is taken into account, but the general principle is the same.

t For join I;F. In ASEF we know SE, SF and' I ESF. Hence
we find EF, Z SEE, iSFE. Hence I FEM {= SEM -SEF) and
lEFM {-= SFM-SFE) are known. With these and EF solve

AMEF and find EM, EF. Lastly, in A8EM we know SE, EM, and
Z SEM, and thus we find SM and Z E8M.
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328. Verification of Kepler's Third Law.—Kepler'&
Third Law can "be veiified much more easily, especially if we
make the approximate assumption that the planets revolve

uniformly in circles about the Sun as centre. The sidereal

periods of the different planets can be found by observing the
average length of the synodic period (the actual length of'

any synodic period is not quite constant, owing to the planet

not revolving with exactly uniform velocity) and applying
the equations of § 322. The distance of the planet may be-

compared with that of the Earth, either by observing the

greatest elongation (§ 317) in the case of an inferior planet,

or by the method of § 319. It is then easy to verify the

relation between the mean distances and periodic times of

the several planets.

In the table of § 314, the student will have little

difficulty in verifying (especially if a table of logarithms-

be employed) that the square of the ratio of the periodic

time of the planet to the year (or periodic time of the

Earth) is in every case equal to the cube of the ratio of

the planet's mean distance to that of the Earth.* The data

being only approximate, however, the law can only be veri-

fied as approximately true, although it is in reality accurate.

Owing to the importance of Kepler's Third Law, we append
the following examples as illustrations.

Examples.

1. Given that the mean distance of Mars is l"o2 times that of the
Earth, to find the sidereal period of Mars.

Let T be the sidereal period of Mars in days. Then, by Kepler's
Third Law,

.-. T = 365i X a/(3-5118) = 365i x 1-874 = 684-5.

Hence, fi-om the given data, the period of Mars is 1-874 of a year^
or 684-5 days.
Had we taken the more accurate value of the relative distance,

viz., 1-5237, we' should have found for the period the correct value,

namely, 687 days.

* In other words, 2 log (period in years) = 3 log (distance in terms
of Earth's distance).
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2. The synodic period of Jupiter being 399 days, to find its distance

from the Sun, having given that the Earth's mean distance is 92
million miles.

Let T be the sidereal period of Jupiter. Then, by § 322,

}_^ J: ]^ _ 33f
T 3651 399 3651 x 399

... r = §99
^ 3651 ^ _ 399

331 * "^ 33^-^

= 11"82, or nearly 12 years.

Let a be the distance of Jupiter in millions of miles. Then, by
Kepler's Third Law,

.-. a = 92x3/(144) = 92x5-24 =482;

that is, Jupiter's distance is 482 millions of miles.

By taking T = 11-82 and the Earth's distance as 9204, we should

have found the more accurate value 477-6 for Jupiter's distance in

millions of miles.

329. Satellites.

—

The motions of the satellites about any

planet are found to obey the same laws as those which Kepler

investigated for the orbits of the planets. For example, the

Moon's orbit about the Earth is an ellipse, and (except so far

as affected by perturbations) satisfies both of Kepler's First

and Second Laws. When a number of satellites are revolv-

ing round a common primary \i.e.^ planet) as is the case with

Jupiter, the squares of their periodic times are found, in

every case, to be proportional to the cubes of their mean
distances from the planet."^"

Example.—To compare (roughly) the mean distances of its two
satellites from Mars. The periodic times are 30^h. and 7ih. respec-

tively, and these are in the ratio (nearly) of 4 to 1.

Hence the mean distances are as 4^ : 1, or ^16 : 1.

Now, 2yi6 = yi28 = 5 very nearly (since 5=^ = 125). Hence
the mean distances are very nearly in the ratio of 5 to 2.

* Of course the relation does not hold between the periodic times

and mean distances of satellites revolving round different planets,

nor between those of a satellite and those of a planet.
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Section IY.—Motions Relative to Stars—Stationary Points.

330. Direct and Retrograde Motion.— We have
<^lescribed (§§ 316-318) the motion of a planet relative to the
Sun. In considering its motion relative to the stars we must
take account of the Earth's motion.

An inferior planet moves more swiftly than the Earth.

Hence at inferior conjunction the line ^^(Fig. 102) joining

them is moving in the direction of the hands of a watch. The
planet therefore appears to move retrograde. At greatest elonga-

tion ( U, U') the planet's own motion is in the line joining it to

the Earth, and hence produces no change in its direction

;

but the Earth's direct motion causes the line EU or EU' to

turn about ^^or U' with a rotation contrary to that of the

hands of a watch; and therefore the apparent motion is

direct. Over the whole portion UB U' of the relative orbit

both the Earth's motion and the planet's combine to make the

planet's apparent motion direct. There must, therefore, be

two positions, M between A and U and N between U' and
A, at which the motion is checked and reversed. At these

two positions the planet is said to be stationary.

A superior planet moves slower than the Earth ; hence at

opposition the line JEA (Eig. 103) joining them is turning in

the direction of the hands of a watch. The planet therefore

appears to move retrograde. At quadrature {R, T) the Earth is

moving along RET; hence its motion produces no change in

the planet's direction. Hence the planet's direct motion about
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the Sun mates its apparent motion also direct. In all parts

of tlie arc BBT the orbital velocities of Earth, and planet

conspire to produce direct motion. Hence the planet is

stationary at M, between A and R^ and at N between
Tand^.

In both cases the longitude increases from M to N and
decreases from iVto if ; hence it is a maximum at N and a

minimum at M. After a complete synodic revolution the

planet's elongation is the same as at the beginning, and the

Sun's longitude has been increased ; therefore the planet's

longitude has also increased. Hence the direct preponderates

'Over the retrograde motion.

Sv/

331. Alternative explanation.—"We may also proceed

as follows. Let E, J represent two planets at heliocentric

conjunction. Let -E*!, -£'2, ^3, ..., «7j, t/g, J^, ,.., be their

successive positions after a series of equal intervals. To find

the apparent motion of J among the stars, as seen from E,
take any point E, and let ^1, E2, E3, ... (Fig. 105) be
parallel respectively to E^J^, E^J^, E^J^, .... Then the
points 1, 2, 3, ... represent J's direction as seen from ^at a

series of equal intervals, starting from opposition.
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Again, if Jl, J2, JZ be taken parallel to J^JE^, •^2^2.

(Fig. 108), tlie points 1, 2 now represent ^'s direction as-

seen from J.

We observe from Figs. 107, 108 that the relative motion is

retrograde from 1 to 2, and becomes direct near 3. At the

instant at which this takes place, either planet must be

stationary, relative to the other. Since J^E^ is nearly a tan-

gent to ^'s orbit, E is near its greatest elongation, and J
is near quadrature at the positions 4 ; hence, U appears

stationary from tT" between inferior conjunction and greatest

elongation ; and J appears stationary between opposition and,

quadrature.

Fig. 107. Fig. 108.

We notice that «71, J^, . . . are paiailel to^ 1, U2, but
measured in opposite directions, showing that the motion of

E relative to J is the same (direct, stationary, or retrograde)/

as that of J relative to E.
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332. Effects of Motion in Latitude. — Hitherto wo
have supposed the planet to move in the ecliptic. "When,

however, the small inclination of the orbit to the ecliptic is

taken into account, it is evident that the j)lanet's latitude is

subject to periodic fluctuations.

The points of intersection of the planet's orbit with the

ecliptic are (as in the case of the Moon) called the Nodes.
Whenever the planet is at a node its latitude is zero ; and
this happens twice in every sidereal period of revolution.

A planet is stationary when its longitude is a maximuin or

minimum, but unless its latitude should happen to be a

maximum at the same time, the planet does not remain,

actually at rest. When the change from direct to retrograde

motion, and vice versa, is combined with the variations in lati-

tude, the effect is to make the planet describe a zigzag curve,

sometimes containing one or two loops, called " loops of
retrogression." This is readily verified by observation.

Fig. 109.

Fig. 109 is an example of the path of Yenus in the neigh-
bourhood of its stationary points, the numbers representing
its positions at a series of intervals of ten days. Here,
the planet is stationary close to the node iV, between 4
and 5, and it describes a loop in the neighbourhood of the
stationary point near 9, where its motion changes from re-
trograde to direct.

The student will find it an instructive exercise to trace out
the path of any planet in the neiglibourhood of its retrograde
motion, using the values of its decl. and R.A., at intervals of

a few days, as tabulated in the !N"autical or Whitahr's
Almanack.
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333. To find the condition that two planets may be
stationary as seen from one another, assuming the
orhits circular and in one plane.— Let P, Q be the

positions of the planets at any instant ; P', Q' their position?

after a very short interval of time.

Then, if PQ and F'Q' are parallel, the direction of either

planet, as seen from the other, is the same at the beginning

and end of the interval ; that is, F is stationary as seen from

Q, and Q is stationary as seen from P.
Let u, V represent the orbital velocities of the planets P, Q ;

a, h the radii SF, SQ respectively.

Fig. 110.

Draw F'H, Q'N perpendicular to FQ. Then, in the

stationary position, we must have F'lf = Q'N.

But FF\ QQ', being the arcs described by the two planets

in the same interval, are proportional to the velocities w, v.

Therefore F'M, Q'N arc proportional to the component
velocities of the planets pei-pendicular to FQ. These com-
ponent velocities must, therefore, be equal, and we have

ti sin F'FM=v sin Q'QN.

"Whence, since F'F is perpendicular to SF and Q'Q to SQ,

u cos SFQ = V cos SQN= -v cos SQP (i.),

and this is the condition that the planete may be stationary

relative to one another.
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*834. To find the angle between the radii vectores in the station-

ary position, and the period during which a planet's motion is

retrograde.—By projecting SQ, QP on SP, we have

a = b cos PSQ + PQ cos 8PQ.

Similarly 6 = a cos PSQ + PQ cos SQP.

.-. cos SPQ : cos SQP = a-h cos PSQ : b -a cos PSQ.

Whence, by (i.), u (a- b cos PSQ) +v (b-a cos PSQ) =0j

.-. 008^*0 = f— (u.).

By means of Kepler's Third Law, we can express the ratio of u to

V in terms of a and b. For if Tj, To denote the periodic times, then

evidently i*Ti = 27ra ; vT^^ = 27rb j

.-. w : t; = aTg : bTj.

But T, : Ta = at : b^

;

.'. vt, \v = x/h : y^a.

Substituting in (ii.), we have

poo = q^fe + fty/tt _ (ab)^(a*-t-bi) _ ^f^b)
°°^ ^ av/a + b-v/b at + 6* a-^{ab)+h'

[From this result it may be easily deduced that

\l + cosPSQ/ v/(a + b)J

In the above investigation PSQ is the angle through which SQ
separates from SP between heliocentric conjunction and the station-

ary point. Hence, since I PSQ increases from 0° to 360° in the

synodic period S, the time taken from conjunction to the stationary

Q IPSO,
point = Sx^g^.

If Z PSQt = Z PSQ, there is another stationary point before con-

junction, when the planets are in the relative positions P, Q. Hence,
the interval between the two stationary positions is twice the time
taken by the planets to separate through Z PSQ, and is therefore

= 2Sx^^ = Sx^^.
360° 18(f

This represents the interval during which the motion of either

planet, as seen from the other, is retrograde. During the remainder
of the synodic period the motion is direct, and the time of direct

motion is therefore

= S-Sx^^Q=Sxl80!^-^.
180° 180°
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Section V.

—

Axial Rotations of Sun and Planets.

335. The Period of Rotation of tlie Sun can be found by
observing the passage of suns^Dots across the disc. These spots, by
the way, are very easily exhibited with any small telescope by
focussing an image of the Sun on to a piece of white paper placed
a few inches in front of the eye-glass—for to look straight at the
Sun would cause blindness. As the Sun's axis of rotation is nearly
perpendicular to the ecliptic, the rotation of the spots is seen in

perspective, and makes them appear to move nearly in straight

lines across the disc. From this observed apparent motion (as

projected on the celestial sphere in a manner similar to that
•explained in § 263) their actual motion in circles about the Sun's
axis is readily determined. For example, if a spot moves from the
•centre of the disc to the middle point of its radius, we may readily

see that the angle turned through = sin~^-| = 30°.

The spots are observed to return to the same position in about
.27^ days, and this is their synodic period of rotation relative to the
Earth. Call it S, and let T be the time of a sidereal rotation, T the
length of the year. Then, as in the case of an inferior planet

.(§ 322), we may show that

S T Y ' " T 27i 365^'
-whence the true period of rotation T = 2o\ days (roughly).

It has been observed that spots near the Sun's equator rotate

rather faster than those near the poles. This proves the Sun's surface

to be in a fluid condition, for no rigid body could rotate in this way.

336. Periods of Rotation of Planets.—The rotation period of a

superior planet is easily found by observing the motions of the

markings across its disc near opposition, allowance being made for

ihe motions of the Earth and planet. The surface of Mars has well-

defined markings, which give the period 2-ih. 37m. The principal

mark on Jupiter is a great red spoc amid his southern belts, which
rotates in the period of 9h. 56m. Saturn rotates in lOh. 14m.
For an inferior planet, the period is more difficult to observe.

There is still some uncertainty as to whether Yenus rotates in about

23h. 21m., or whether, like Mercury, it always turns the same face

to the Sun. There are no well-defined markings, and, as the

greatest elongation is only 45°, Yenus can only be seen for part of

the night as an evening or morning star, and in the most favourable

positions only a portion of the disc is illuminated. Moreover,
refraction, modified by air-currents, prevents the planet from being

seen distinctly when near the horizon. If the same markings are

:seen on the disc of a planet on consecutive nights, they may either

have remained turned towards the Earth, or they may have rotated

through 360° during the day; hence the difficulty of deciding between
the two alternative hypotheses. Before the researches of Schiapa-

relli (§ 305), it was believed that Mercury also rotated in about 24h.
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EXAMPLES.—X.

1. The Earth revolves round the Sun in 365-25 days, and Venus

in 22-i*7 days. Find the time betvreen two successive conjunctions

of Venus.

2. If Venus and the Sun rise in succession at the same point of

the horizon on the 1st of June, determine roughly Venus' elongation,

3. Find the ratio of the apparent areas of the illuminated portions

of the disc of Venus when dichotomized and when full, taking

Venus' distance from the Sun to be y\ of that of the Earth.

4. Mars rotates on his axis once in 24 hours, and the periods of

the sidereal revolutions of his two satellites are 7^ hours and 30

hours respectively. Find the time between consecutive transits

over the meridian of any place on Mars of tho two satellites

respectively.

5. A small satellite is eclipsed at every opposition. Find an
expression for the greatest inclination which its orbit can have to

the plane of the ecliptic.

6. If the periodic time of Saturn be 30 years, and the mean dis-

tance of Neptune 2,760 millions of miles, find (roughly) the mean
distance of Saturn and the periodic time of Neptune. (Earth's mean
distance is 92 millions of miles.)

7. If the synodic period of revolution of an inferior planet were a
year, what would be its sidereal period, and what would be its mean
distance from the Sun according to Kepler's Third Law ?

8. Jupiter's solar distance is 5'2 times the Earth's solar distance

;

find the length of time between two conjunctions of the Earth and
Jupiter.

9. Saturn's mean distance from the Sun is nine times the Earth's

mean distance. Find how long the motion is retrograde, having

10. Show that if the planets further from the Sun were to move
with greater .velocity in their orbits than the nearer ones, there

would be no stationary points, the relative motion among the stars

Ticing always direct. What would be the corresponding phenomenon
if the velocities of two planets were equal ?
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EXAMINATION PAPER.—X.

1. Explain the apparent motion of a superior planet. Illustrate
by figures.

2. Describe the apparent course among the stars of an inferior
planet as seen from the Earth, and the changes in appearance which
the planet undergoes.

3. Define the sidereal and synodic period of a superior or inferior
planet, and find the relation between them. Calculate the synodic
period of a superior planet whose period of revolution is thirty
years.

4. How is it that Venus alters so little in apparent magnitude (as
seen by the naked eye) in her journey round the Sun ? Why does
not Jupiter exhibit any perceptible phases ?

5. State Bode's Law connecting the mean distances of the various
planets from the Sun.

6. Prove that the time of most rapid approach of an inferior
planet to the Earth is when its elongation is greatest, and that the
velocity of approach is then that under which it would describe its

orbit in the synodic period of the Earth and the planet. Give the
corresponding results for a superior planet. (The orbits are to be
taken circular and in the same plane.)

7. "What is meant by stationary points in the apparent motion of a
planet ? Prove that, if a planet Q is stationary as seen from P,

then P will be stationary as seen from Q.

8. State Kepler's Three Laws, and, assuming the orbits of the
Earth and Venus to be circular, show how the Third Law might be
verified by observations of the greatest elongation and synodic
period of Venus.

9. Find the periods during which Venus is an evening star and a
morning star respectively, being given that the mean distance of

Venus from the Sun is '72 of that of the Earth.

10. Having given that there will be a full Moon on the 5th of June,
that Mercury and Venus are both evening stars near their greatest

elongations, that Mars changed from an evening to a morning star

about the vernal equinox, and that Jupiter was in opposition to the

Sun on April 21st, draw a figure of the configuration of these

heavenly bodies on May 1st. (All these bodies may be supposed to

move in one plane.)



CHAPTER XI,

THE DISTANCES OE THE SUN AND STARS.

Section I.

—

Introduction—Determination of the Sun's Parallax

hy Observations of a Superior Planet at Opposition."^

337. In Chapter YIII., Section I., we explained the nature

of the correction known as parallax, and showed how to find

the distance of a celestial body from the Earth in terms of its

parallax. We also described two methods of finding the
parallax of the Moon or of a planet in opposition—the first

by meridian observations at two stations, one in the northern

and the other in the southern hemisphere (§ 252) ; the second

by micrometric observations made at a single observatory

shortly after the time of rising and shortly before the time
of setting of the planet or observed body (§ 254).

In both methods the position of the body is compared with
that of neighbouring stars. This is impossible in the case of

the Sun, for the intensity of the Sun's rays necessitates the

use of darkened glasses in observations of the Sun, and these

render all near stars invisible.

Of course the star could theoretically be dispensed with in the
method of § 252, but only (as there explained) at a great sacrifice

of accuracy ; and if a star is used which crosses the meridian at
night, the temperature of the air has changed considerably, and the
corrections for refraction are therefore quite different, besides
which other errors are introduced by the change of temperature
of the instrument.

* The student will find it of great advantage to revise Section I.

of Chapter YIII. before commencing the present Section.
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In § 264 we described a method, due to Aristarclius, in

•which the ratio of the Sun's to the Moon's distance was
determined by observing the Moon's elongation when dicho-

tomized, but this method was rejected, owing to the irregular

boundary of the illuminated part of the disc, and the con-

sequent impossibility of observing the instant of dichotomy.

338. Classification of Methods.—The principal ^ra<?-

ticahle methods of finding the Sun's distance may be con-

veniently classified as follows :

—

A. Geometrical Methods.

( 1

)

By observations of the parallax of a superior planet at

opposition (Section I.).

(2) By observations of a transit of the inferior planet

Yenus (Section II.).

B. Optical Methods (Section lY.).

(3) By the eclipses of Jupiter's satellites (Eoemer'sMethod).

(4) By the aberration of light.

C. Gravitational Methods (Chapter XIY.. Section lY.).

(5) By perturbations of Yenus or Mars.

(6) By lunar and solar inequalities.

339. To find the Sun's Parallax by Observation of
the Parallax of Mars.—By observing the parallax of

Mars when in opposition, the Sun's parallax can readily be
found. For the observed parallax determines the distance of

Mars from the Earth, and this is the difference of the dis-

tances of the Sun from the Earth and Mars respectively.

The ratio of their mean distances may be found, if we assume
Kepler's Third Law (§ 326), by comparing the sidereal period

of Mars with the sidereal year, and is therefore known.
Hence the distance of either planet from the Sun may readily

be found, and the Sun's parallax thus determined.

The parallax of Mars in opposition may be observed by
either of the methods described in Chapter YIII., Section I.

The method of § 252 (by meridian observations at two
stations) was employed by E. J. Stone in 18G5. The observa-

tions were made at Greenwich and at the Cape, and the Sun's

parallax was computed as 8-943". The method of § 254 (by

observations at a single observatory) was employed by Gill

at Ascension Island in 1879, and the result was 8"783".
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Example.

If tte parallax of Mars when in opposition be 14", to find the

Sun's parallax, assuming the distances of the Sun from the Earth
and Mars to be in the ratio of 10 : 16.

The distance of the Earth from Mars in opposition is the difference

of the Sun's distances from the two planets. Hence

Distance of Earth from Mars : Distance of Earth from Sun
= 16 - 10 : 10 = 3 : 5.

But the parallax of a body is inversely proiiortional to its dis-

tance (§250).
.'. Parallax of Sun : Parallax of Mars = 3 : 5 j

.*. Sun's parallax = — = 8"4".
5

*340. Effect of Eccentricities of Orbits.—Owing to the eccen-

tricities of the orbits of the Earth and Mars, their distances from the

Sun when in opposition will not in general be equal to their mean
distances, and therefore their ratio will differ from that given by
Kepler's Third Law. But, by the method of § 145, the Earth's dis-

tance at any time may be compared with its mean distance, and
similarly, since the eccentricity of the orbit of Mars and the position

of its ap33 line are known, it is easy to determine the ratio of Mars'

distance at opposition to its mean distance, and thus to compare its

distance with that of the Earth.

341. Sun's Parallax hj Observations on the Aste-
roids and on Venus.—The Sun's parallax may also be

found by observing the parallax of one of the asteroids when
in opposition, the method being identical with that employed
in the case of Mars. In this way Galle, by meridian obser-

vations of the parallax of Plora at opposition in 1873, com-
puted the Sun's parallax at 8-873", and Lindsay and Gill, by
observing the parallax of Juno in 1877, found the yalue
8-765".

The next planet, Jupiter, is too distant to be utilized in

this way. Its parallax at opposition is less than a quarter of

the Sun's parallax, and is too small to be observed with
- sufficient accuracy.

The Sun's parallax might also be found by an observation of

Tonus near its greatest elongation. The ratio of its distance

to the Sun's might be calculated and its parallax found by the

method of § 252, and that of the Sun deduced. The method
of § 254 could not be employed, because one of the observa-

tions would have to be made in full sunshine.
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Examples.

1. Having given that the greatest possille -parallax of Mars when in

opposition is 21*08", to find the Sun's mean parallax, the eccentri-

cities of the orbits of the Earth and Mars being -^ and ^ respec-

tively, and the periodic time of Mars being 1"88 of a year.

The parallax of Mars is greatest vphen Mars is nearest the Earth ;

hence the greatest possible value occurs when, at opposition, Mars is

in perihelion and the Earth is at aphelion.

Let r, r' denote the mean distances of the Earth and Mars from
the Sun respectively. By Kepler's Third Law we have

rl= (if)!, .,X' =(1.88,1 = 1.523.

(The calculation is most easily performed with a table of logarithms.)

But since the Earth is in aphelion, its distance from the Sun at

the time of observation is greater than its mean distance by ^V
and is therefore

= r(l + ^) = 1-017 r.

Also the distance of Mars from the Sun at perihelion

= r' (1 -tV) = (1-^)x 1-523 r

= (l-523--090)r= 1-433 r.

Hence the least distance of Mars from the Earth at opposition

= -416 r.

Therefore, since r is the Sun's mean distance from the Earth, we
have

Observed parallax of Mars : mean parallax of Sun = 1 : -416;

.-. Sun's mean parallax = 21-08'' x -416 = 8-77''.

2. To find the Earth's mean distance from the Sun, and its dis-

tances at perihelion and aphelion, taking the Sun's parallax as 8"79".

If a denote the Earth's equatorial radius, we have, approximately
y,

a a ax ^06,265

sin 8-72" circ. meas. of 8-79" 879
Taking a = 3963-3, this gives

r (Earth's mean solar distance) = 93,002,000 miles,

correct to the nearest thousand miles.

Also, perihelion distance from Sun = 93,002,000 x (1—J-)

= 93,002,000-1,550,000 = 91,452,000 miles,

and aphelion distance = 93,002,000 x {1 + -^)

= 93,002,000-1-1,550,000 = 94,552,000 miles.
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Section II.

—

Transits of Inferior Planets.

342. "When Yenus is very near the ecliptic at inferior con-

junction, it passes in front of tlie Sun's disc, appearing like

a black dot on the Sun. Now the circumstances of such a

transit are different at different places, for although both

the Sun and planet are displaced by parallax, their displace-

ments are different, and their relative directions are therefore

not the same. Now the ratio of the parallaxes of the Sun
and planet at conjunction can be calculated from comparing
their periodic times, or from the ratio of their distances, as

determined by observations of the planet's greatest elonga-

tion or otherwise. Hence, by comparing the circumstances

of the transit at different places, it becomes possible to deter-

mine the parallaxes of both the Sun and planet.

The various methods of finding the Sun's parallax from
observing transits of Yenus may be classified as follows :

—

(i.) By simultaneous observations of the relative position

of the planet at different stations, either by micrometric mea-
surements, or from photographs.

(ii.) DelisWs method, by comparing the times of the legin-

mng or end of the transit at stations in different longitudes.

(iii.) JELalley'^s method, by comparing the durations of the

transit at stations in different latitudes.

Of these methods Halley's is the earliest, Delisle's the next.

343. First Method.—Let P and 'p be the horizontal

parallaxes of the Sun and of Yenus respectively at the time of

transit. Then, at a place where the planet's zenith distance

is s, its direction is depressed by parallax through an angle

^ sin z (§ 249) ; also the Sun is depressed through F sin z.*

Hence the planet appears to be brought nearer to the Sun's
lower limb by an angle (jp—P) sin z.

If, now, the positions of the planet relative to the Sun's disc

be simultaneously observed at any two or more different

places, and the Sun's zenith distances be also determined,
the difference of parallaxes p—P can be readily found.
Thus, if one of the stations be chosen where the Sun is

* Strictly speaking, this should be P sin z„ where Zj is the Z.D. of
the Sun's centre, but Zi is very nearly equal to z, and no sensible
error is introduced by taking z instead of ajj.



272 ASTEON-OMr.

vertical, and anotter where the Sun is on the horizon, the
relative displacement will he zero at the former station, and
j^ —P at the latter. Hence, the two directions of the planet
relative to the Sun will he inclined at an angle p — P. -If

two stations are at opposite ends of a diameter of the Earth,
the angular distance hetween the relative positions will ho
2{p—P). HeDce, in either case,^—P can he readily found.

Let now r and r denote the distances of Yenus and the
Earth from the Sun respectively. Then, if P he the ratio of

the sidereal period of Yenus to a year, we have, hy Kepler's

Third Law (assuming the orbits circular),

r'lr = TS
whence the ratio of r' to r is found. Also, since Yenus is in

conjunction, its distance from the Earth is = r—r'. There-
fore p : P= r : r—r\

T P r—r r ,and -=

—

— = 1.p—P r r

"Whence, since the ratio of r to r is known, and P—p has
been observed, the Sun's horizontal parallax Pmay be found.

We have roughly (by Bode's Law) r =-^-Qr, and therefore

P = f (i^-P).

Hence the displacement of Yenus on the Sun's disc at a place

where its zenith distance is %, is about | P sin z.

The apparent position of Yenus on the Sun's disc may be
observed either by measuring the planet's distance from the
edge of the disc with a micrometer or heliometer, or by taking
a photograph of the Sun. Eut the photographic method,
though easier, does not give such accurate results.

For, to obtain P correct to 0"01'', it would be necessary to find

2(p — P) correct to -V-xO'Ol", or about 005". Since the Sun's dia-

meter is 32', the greatest possible difference of positions would be

only , or ,^
20 X 32 X 60 37400

of the Sun's diameter. It is difficult to obtain a good photograph
of the Sun more than 4^ inches in diameter, and it would, therefore,

be necessary to measure the planet's position correct to g^-gVo of an
inch, a degree of accuracy unattainable in practice. The slightest

distortion or imperfection in the photographic plate would render
the observations worthless.
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344. Delisle's Method.—In this method, the Sun's

parallax is determined by observing the difference between
the times at which the transit begins or ends at different

places. Let ^, ^ be two stations near the Earth's equator in

widely different longitudes, say at the ends of the diameter

of the Earth, and in the plane containing UF, the path of

Venus' relative motion. Draw AUL and i?FZ, touching

the Sun in L and cutting the path of Venus in U, V. Then,

when Venns reaches U the transit begins at A, the planet

appearing to enter the Sun's disc at Z, and when Venus is at

V the transit begins at B. In the interval between the

times of commencement of the transit as seen from A and B,
the planet moves through the angle UZVor ALB about the

Sun relative to the Earth, and this angle, being the angle sub-

tended at the Sun by the Earth's diameter AB, is twice the

Sun^s parallax.

A
ECU

it

Fig. 111.

But the rate of relative angular motion of Venus is known,
heing 360° in a synodic period. Hence the angle ULV,
described in the observed interval, is known, and the Sun's
parallax is thus found.

In a similar way, the Sun's parallax may be determined by
observing the interval between the times at which the transit

ends at two stations A, B. We should have to draw two
tangents from A, B to the opposite side of the Sun (M).- As
before, the angle described by Venus in the observed interval
is twice the Sun's parallax.
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In employing Delisle's method, the observed times of

ingress or egress must be the Greenwich times, or must be
reckoned from an epoch common to both observers. Por this

reason the difference of longitudes of the two stations must
be accurately known. In the following example the ob-

served interval 690s. corresponds to 8-86" of parallax, and it

follows that an error of Is. in the estimated interval would
give rise to an error of just over 0-01" in the computed
parallax. Hence if the interval of time be estimated correct

to the nearest second, the parallax will be correct to two
decimals of a second.

In practice it would be difficult to make observations from
the extremity of a diameter of the Earth, but the method is

readily modified so as to be applicable when the stations are

not so favourably situated.

Example.

Given that the synodic period is 584 days, and that the difference

between the times of ending of a transit, as seen from opposite ends
of a diameter of the Earth, is 11m. 30s., to find the Sun's parallax.

In 584 days Yenus revolves through 360° about the Sun relative

to the Earth ; therefore its angular motion per minute

360x60x60 , , „.,,,= seconds = 1"541 .

584 X 24 X 60

Therefore in 11Jm. Yenus describes an angle 1'541" x 11|= 17*72".

This angle is twice the Sun's parallax
;

.'. Sun's parallax = 8*86".

345. Halley's Method.— The method now to be de-

scribed was invented by Dr. Halley in 1716, and was first

put into use at the transits in 1761 and 1769. In Halley's

method the tirnes of duration of the transits are observed

from two stations A, £, one in north and the other in south

latitude, in a plane as nearly as possible perpendicular to the

ecliptic, or, more strictly, to the relative path of Venus. Take
this plane as the plane of the paper in Fig. 112, and suppose

also (for the purpose of simplifying the explanation) that

A, £ are at the ends of a diameter of the Earth. Let ZM
be the diameter of the Sun's disc perpendicular to the line of

centres, and let the directions of Venus AT, JBV, when pro-

duced, meet the disc in a,h. Then a, h are the relative posi-

tions of Venus as seen at conjunction from A and B.
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In Eig. 113 tlie Sun's disc is represented as seen from the

Eartli ; a, h are tlie positions of Yenus as seen on the disc

from A, £, projected on ZM, in Fig. 112, and FQE, F'Q'H'

are the apparent paths of Yenus as it appears to cross the

disc at £ and A respectively.

As in § 343, the angular measure of the arc ah or Q^
measures the sum of the displacement of Yenus due to relative

parallax at A and F, and this, in the circumstances here

considered, is twice the difference of the parallaxes of the

Sun and Yenus.

Fig.112.

^K,
f
-a^\ k 0' B

P^'^l^B.M
Fig. 113.

Now the observed times of duration of the transit at A
and B are the times taken to describe the chords P' QR' and
PQR respectively. Knowing the synodic period of Yenus
and the ratio of its distances from the Sun and Earth, the

rate at which Yenus travels across the Sun's face can be
found. Hence, the angular lengths of the chords PQR,
F'QIR' can be found. Also the Sun's angular diameter LM
is known. Hence the angular distances OQ, OQ, QQ can
be calculated, for we have (very approximately)

0(2'= OM^-PQ^, 0Q^= OM^-P'Q\
and QQ' = OQ'-OQ.

Hence QQ' is known, and therefore the difference of

parallaxes of Yenus and the Sun is found ; whence the

Sun's parallax may be found as in § 343.
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*346. Or if AB be known in miles, the length of ah in miles can>
be found from the proportion ah : AB = Va : VA, and then, the angle-
aAh being known (being the angular measure of QQ'), we can find,

the Sun's distance in miles, for we have

circular measure of Z aAh — — ; whence
aA

Sun's distance Aa (in miles) = length a?, (in miles)
_

circular measure of Z aAb

The working of Halley's method will be made much
clearer by a careful study of the following numerical
examples. The student should copy Tigs. 112 and 113.

Examples.

1. To find the angular rate at which Yenus moves across the
Sun's disc.

Let S, E, V denote the Sun, Earth, and Venus respectively
(Fig. 112).

From the example of § 344, 8V separates from SE with relative
angular velocity, about S, of 1*54" per minute, or 1' 32-4" per hour.

But Yenus is nearer the Earth than the Sun in the ratio 28 : 72:
(roughly). And we have

angular velocity of EV : ang. vel. of SF

=
Fr^lF = ^^^28 = i8:7.

Therefore EV separates from iJ/S with angular velocity

= ^ X 1' 32-4" per hour = 3' 57'6" per hour

= 4" per minute very nearly.

2. Neglecting the motion of the observatory due to the Earth's
rotation, find the position on the Sun's disc of the chord PR, tra-

versed by the planet, in order that the transit may take four hours.

Draw the figures as in § 345.

In four hours Yenus moves 4x3' 58", or very nearly 16' relative

to the Sun (by Ex. 1) ; .*. the chord PR must measure 13'. Hence-
PR is equal to the Sun's angular semi-diameter OP.

Therefore, PR is a side of a regular inscribed hexagon in the Sun,,

and Z MOP = 30°.

3. If, at A, B, at opposite ends of a diameter of the Earth perpen-
dicular to the plane of the ecliptic, the durations of transit are-

3h. 21m. and 4h. respectively, to find the Sun's parallax.



THE DISTANCES OF THE SUN AND STARS. 277

Here the arc PR takes 39m. longer to describe than P'B'. Hence
it is longer by 39 x 4", or 156". Draw B'K perpendicular to PR.
Then, ER = i(PB-P'B') = i x 156" = 78".

Now, by Example 2,

Z MOB = 60°.

And BB', being very small, is approximately a straight line perpen-
dicular to OB ;

.-. B'BK = 30° approximately. Hence

Q'Q = B'K = BK tan 30° = BK^^ = ^^B" = 45" nearly.

But
angular measure of Q'Q : twice Sun's parallax

= SF: je;f= 18 : 7;

.*. twice Sun's parallax = 45" x -^ = 17'50";

.-. Suu's parallax = 8'75".

4. A transit of Yenus was observed from two stations selected as
favourably as possible, one in N. the other in S. latitude, the zenith
distances of the planet being 53° 8' (sin 53° 8' = '8) and 30°

respectively. Given that the times occupied by the planet in pass-
ing across the disc were 4h. 52m. and 4h. 30m., to find the Sun's
parallax, assuming the distances of Venus and the Earth from the
Sun to be in the ratio of 18 : 25 and neglecting the rotation of the
Earth.

Venus moves nearly 4" per minute relative to the Sun; hence in

4h. 30m. it moves through 18'.

In 4h. 52m. it moves through 19' 28"
;

.-. in Fig. 113, P'Q' = IS' x''^ = 9',

PQ = 19' 28" X i t= 9-73*,

and the Sun's semi-diameter SP == 16' nearly;

.-. SQ =x/SP^-PQ^ = \/256- 94-67 = 1270';

SQ' = VSP'-^-P'Q'" = v/256-8i = 13-23'

;

.-. QQ' = -53' = 31-8".

N"ow, if A and B be well chosen, QQ' is the sum of the relative
displacements of Venus at the two stations. Let P be the Sun's
parallax, p that of Venus ; then we have

QQf = (p-P)(sin2 + sin2') ==
( 33- P) x (sin 30° + sin 53° 8')

= (l)-P)x(-5 + -8) = (p-P)xl-3;

.-. 2)-P= H^=24-5".
1-3

Again, P:p= -^ :
A- =£F: £5 = 7:25;

.-. P:p-p = 7: 18;

.-. P = 24-5" X T-V
= 9-5".

Hence, with the given data, the Sun's parallax is 9*5".
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347. Difficulties of Observing the Duration of a
Transit.—In Examples 3, 4, above, tlie observed differences

of duration were 39m. and 20m. respectively. An error of

one second in tbe estimated durations of transit would give

rise to an error of less than O'l per cent., and if we could be
sure of observing the durations to within a second, the Sun's

parallax could be found correct to two decimal places. But
in practice it is extremely difficult to estimate the times of

beginning and ending of a transit, even to the nearest second.

For in the first place,Yenus,when seen throughthe telescope,

is not a mere point, but a disc of finite dimensions, its angular
diameter at conjunction being about 67", or one-thirtieth of

the diameter of the Sun. Hence its passage across the edge
of the disc from external to internal contact occupies an
interval which is never less than about I7s. (See Example
on page 279.)

Eastf K9^^^WA West

Fig. 114.

Now, it is impossible to observe the first external contact
(
U)

of Venus with the Sun, because the planet is invisible until

it has cut off a perceptible portion from the edge of the Sun's

disc, and by that time it has advanced considerably beyond
the point of contact. The last external contact ( P) at the end of

the transit is also difficult (though rather less so) to observe,

for a similar reason.

For this reason, the internal contacts 77', V, are alone

observed, and a correction is applied for the angular semi-

diameter of Venus.

But in observing the first internal contact 77', when the

planet's disc separates from the edge of the Sun, another

difficulty, in the form of an optical illusion, makes itself

manifest.
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Instead of remaining truly circular, the planet's disc appears

to become elongated towards the edge of the Sun, and remains

for some time connected with the edge by a narrow neck

called the " black drop." This breaks suddenly at last, but

not until the planet has separated some distance from the

Sun's edge.* Even if the "black drop" be remedied, the

atmosphere surrounding the planet Yenus renders the con-

tacts uncertain and ill-defined.

It is worthy of notice that in Delisle's method the times of

ingress and egress at both stations are equally affected by the

"black drop" appearance, and therefore it has no effect on

the computation, provided that both observers take the same

stage of the phenomenon for the observed time of ingress.

Example.

Having given that the angular diameter of Yenus at conjunction

is 67", to find the interval between external and internal contact (i.)

when Yenus passes across the centre of the Sun's disc, (ii.) in the

circumstances of Example 2, § 346.

(i.) Between external and internal contacts the planet moves
through a distance equal to its angular diameter ; therefore, since its

rate of motion is 4" per second, the time occupied = 67 -r 4s, = 17s.

very nearly.

(ii.) Here the planet is 67" nearer the centre at internal than at

external contact. Now the planet's direction of motion UV is

inclined at angle 60° to the radius through the centre of the disc (Fig.

114). Hence the planet's component relative velocity along the
radius is 4" cos 60° per second, and therefore the interval required,

in seconds,

= 67 _67
4 cos 60° 2

- 33-5S.

348. Recent Determinations of the Parallax of
the Sun.—Professor Arthur Auwers, the well-known Berlin

astronomer, has recently (December 11, 1891) completed the

calculations based on the observations in Germany of the

transit of Yenus in 1 882. He finds that the parallax of the Sun
is 8*800 seconds, with an error of 0*03 of a second at most.

From the old observations of the transits of 1761 and 1769,

Prof. IS'ewcomb has lately computed the parallax at 8"79".

* The " black drop " may be illustrated by holding two globes in

the sunshine, at different distances from a white screen, and moving
them until their shadows nearly touch.
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349. Advantages and Disadvantages of Halley's
and Belisle's Methods.—In Halley's metliod the observed
data are the intervals of time occupied by Yenus in crossing

the Sun's disc at the two stations. It is not necessary to

know the actual times of the transit; hence neither the
Greenwich time nor the longitude of the observatories need
be known. In Delisle's method it is essential that the
Greenwich times of the observations should be known with
great accuracy, but it is not necessary to observe both the
beginning and end of the transit at the two stations. Still,

if these be both observed, we have two independent data

for calculating the parallax, which afford some test of the
accuracy of the computations.

On the other hand, Delisle's method possesses the advan-
tage that the places of observation must be near the Earth's

equator, and it may therefore be possible to select the stations

nearly at opposite ends of a diameter of the Earth, and thus
to get the greatest effect of parallax, while in Halley's

method it is necessary that the stations shall be in as high
latitudes as possible, and, owing to the practical difficulties

of taking observations near the poles, the greatest effect

of parallax cannot be utilized.

Delisle's method is most easily employed if the transit is

nearly central, i.e., if Venus passes nearly across the ee7itre

of the Sun's disc. This condition is fatal to the success of

Halley's method ; here the best results are obtained when
Yenus transits near the ed(/e of the disc.

For in Fig. 113 (page 275) we have
OQ'^-OQr = QP^-Q'P'^,

PR-P'B'^QP^Q'P^^
^^

2 OQ + OQ'

Hence the effect on QQ' of a small error in the computed length of

PR or PR' will be least when QP + Q'P' is smallest and OQ + O'Q' is

largest, a condition satisfied when the transit takes place near the
edge M of the disc.

On the other hand, for a nearly central transit, OQ, O'Q' would be
small, and very slight errors in the estimated lengths of PR, P'R'
would produce such large errors in the computed displacement
QQ' as to render the method practically worthless.

The transits of 1874 and 1882 were both favourable to the

use of Halley's method.
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*350. To determine the frequency of Transits of

Venus.—Since the Sun's angular semi-diameter is about 16',

a transit of Yenus only occurs when the angular distance

between the centres of the Sun and Venus, as seen from some

place on the Earth, is 16'. Hence, neglecting the effects of

the relative parallax {P-p = 23" by Ex. 3. § 346, and this

is small compared with 16'), Yenus must be at an angular dis-

tance {8EV) < 16' from the ecliptic at the time of conjunc-

tion. Hence the planet's heliocentric latitude JESVvuVi^t be

less than 16' x JET/^S T, that is 16' X yV, or about 6'. iN'ow

the orbit of Yenus is inclined to the ecliptic at about 3° 23',

or 203'. Hence, by a method similar to that of § 292, we see

that the planet must be at a distance from the node of not

more than about sin"^-2^= sin'^g^^ (roughly) = 1°42', in

order that a transit may take place. The smallness of

this limit alone shows that transits of Yenus are of rare

occurrence.

Now, a synodic period of Yenus contains about 584 days,

that is, 1*599, or, more accurately, r598662 of a year.

Hence five synodic revolutions occupy almost exactly eight

years, the difference only amounting to -^^-^ of a year. This

difference corresponds to an arc of ff§, or 2° 24' on the
ecliptic. This arc is much less than the douMe arc 3° 24'

Avithin which transits take place. Hence it frequently

happens that, eight years after one transit has taken place,

the Sun and Yenus are again at conjunction withicL the
necessary limits, and another transit occurs near the same
node. Eut after sixteen years, conjunctionmil occur at 4° 48'

from its first position ; this is greater than 3° 24' ; hence
there cannot be more than two transits near the same node at

intervals of eight years. And if a transit should be central^

occurringalmostexactly^?^ the node, the conjunctions occurring
eight years before and after would fall outside the required
limits, and no second transit would then take place in eight
years.

Again, it maybe shown that 1-598662x147 = 235-003.
Hence 147 synodic periods of Yenus occupy almost exactly
235 years, the difference being only -003 of a year. Thus a
transit of Yenus may recur at the same node at an interval

of 235 years. And it is possible to prove that there is no
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intermediate interval between 8 and 235 years at wliich

transits recur at the same node.

If the orhits of the Earth and Venus were circular, a transit

at one node would be followed by one at the opposite node in
113i or 121^ years. Por

1-598662x71 = 113^+ -005; 1-598662 x 76 = 121^--002.

But this result is modified by the eccentricities of the orbits

(which now cause a difference of nearly a day in the times

taken by the Earth to describe the two halves into which its

orbit is divided by the line of nodes).

In reality it is found that the intervals between transits of

Yenus occur at present in the following order :

—

8, 105^; 8, 12U; 8, 105^; 8, 121^.

Transits have occurred, and are about to occur, in 1761, 1769,

1874, 1882, 2004, 2012 (the thick and thin type being

used to distinguish the two different nodes)

.

*35 1 . Transits of Mercury occur much more frequently

than transits of Yenus. For although the orbit of Mercury
is inclined to the ecliptic at about twice as great an angle as

that of Yenus, this cause is more than compensated for by
the greater proximity of the planet to the Sun ; and since

the synodic period of Mercury is only about |- of that of

Yenus, conjunctions occur five times as often, so that we
should ceteris paribus expect five times as many transits. By
a method similar to that employed for Yenus it is found that

transits occur at the same node at intervals of 7, 13, 33, or

46 years. The next transit will occur in 1894.

Although transits of Mercury thus occur far more often

than transits of Yenus, they cannot be used to determine the

Sun's parallax with such accuracy, for Mercury is so near the

Sun that the parallaxes of the two bodies are more nearly

equal, and the planet's relative displacement is therefore

much smaller than that of Yenus. Moreover, Mercury moves
much more rapidly across the Sun's disc, giving less time for

accurate observations ; besides which, owing to the great

eccentricity of the orbit, the ratio of Mercury's to the Earth's

distance from the Sun cannot be so exactly computed.
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Section III.

—

Annual Parallax, and Distances of the

Fixed Stars.

352. Annual Parallax,* Definition. — By Annual
Parallax is meant the angle between the directions of a
star as seen from different positions of the Earth in its annual
orbit round the Sun.

We have several times (§§ 5, 247) mentioned that the fixed
stars have no ^i^'^reQmhle geocentric parallax. Their distances

from the Earth are so great that the angle subtended at one
of them by a diameter of the Earth is far too small to be
observable even with the most accurately constructed instru-

ments. But the diameter of the Earth's annual orbit is

about 23,400 times as great as the Earth" n diameter, or about
186 million miles (twice the Sun's distance), and thi»
diameter subtends, at certain of the nearest fixed stars, an
angle sufficiently great to be measurable, sometimes amounting'
to between 1" and 2".

IN'ow, the Earth, by its annual motion, passes in six month*
from one end to the other of a diameter of its

orbit ; hence, by observing the same star at an
interval of six months, its displacement due to

annual parallax can be measured.

Since the Sun isjixed, the position of a star on
the celestial sphere is correctedfor annual parallax

by referring its direction to the centre of the Sun ;

this is called the star's heliocentric direction, as

in § 156.

The correction for annual parall^ix is

the angle between the geocentric and heliocen-

tric directions of a star. Let S be the Sun, jE'the Earth, x
the star (Fig. 115). Then Ex is the apparent or geocentric

direction of the star, Sxii^ heliocentric direction, and z.ExS
is the correction for annual parallax. This angle is also equal
to xEx^ where Ex- is parallel to Sx.

"We notice that the correction for annual parallax [ExS)
is the ancfular distance of the Earth from the Sun as they would
appear if seen by an observer on the star.

ASTRON. V
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353. To find the Correction for Annual Parallax.

Let r = ES = radius of Earth's orbit.

=. Bx ^:. distance of star.

E=. Z. SEx = angular distance of star from Sun.

p =. A ExS = annual parallax of star.

By trigonometry we have in the triangle SEx
smEx8_ES^
dnSEx Sx

'

whence* sinjp =— sin^ (i.).

Hence the parallactic correction p is greatest when
E — 90°. This happens twice a year, and the corresponding

positions of the Earth in its orbit are evidently the inter-

sections of the ecliptic with a plane drawn through S per-

pendicular to Sx. Let this greatest value of p be denoted

by P, (hen P is called the star's annual parallax, or

simply the star's parallax.f

Putting E = 90° in (i.), we have

and therefore sin j^ = sin P . sin E.

* Notice the close similarity between the present investigation
and that of § 249.

t There is no risk of confusion in the use of the term parallax
alone, because a star has no geocentric parallax. The " parallax "

of a body means its equatorial horizontal parallax if the body belongs

io the solar system. If not, its " parallax " is its annual parallax.
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But the angles P, js? are always very small ; therefore their

sines are very approximately equal to their circular measures.

Thus we have approximately

JP (in circular measure) = —

,

i> = jP sin E ;

and, if P", p" denote the numbers of seconds in P, p,

P" = 180x60x_60j^^ 206,265 L (approximately),

and p" = P" sin E.

354. Relation between the Parallax and Distance
of a Star.—If a star's parallax be known, its distance from
the Sun is given by the formula

P" = 180x60x60 j^ ^ 206,265 il;

180XJ^9X60^^ 5 r

K F" F'

where r is the Sun's distance from the Earth.

For most purposes r may be taken as 93 million miles.

Examples.

1. The parallax of Castor is 0'2"
; to fird its distance. We have

d = 206 265 '- = 206,265x93,000,000

P" 0-2

= 5 X 206,265 X 93,000,000

= 95,900,000,000,000, or 959 x 10" miles

approximately. It would be useless to attempt to calculate more
figures of the result with the given data, which are only approximate.
It is most convenient (besides being shorter) to write the result in
the second form.

2. To find the distance of o Centauri (i.) in terms of the Sun's
distance, (ii.) in miles, taking its parallax to be 0-750".

Here d = ?^^^r = 215,000 r

= 275 X 103 X 93 X 10^' = 25,575 x lO^

= 256 X 10" miles approximately.

whence d = -— -— r = 206,265 —

,
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355. General Effects of Parallax.— Since Ex is

parallel to Sx^ it is in the same plane as ES> and Ex.

Hence the lines i5'*S', ^.i-, Ex cut the celestial sphere of E at

points >S, X, Xq, lying in one great circle, and we have the

two following laws :
—

(i.) Parallax displaces the apparent position of a star from

its heliocentric position in the direction of the Sun.

(ii.) The parallactic displacement ofany star at different times

varies as the sine of its angular distance from the Sun.

Fig. 118.

Let Fig. 118 represent the observer's celestial sphere,

S the Sun. Let x be the apparent or geocentric position

of the star, whose parallax is F. Draw the great circle

Sx and produce it to ^^, making

xx^ =: Psin Sx.

Then x^ represents the star's heliocentric position, and this

is its position as corrected for annual parallax.

Conversely, if the star's heliocentric position x^ is given,

wc may obtain its geocentric or apparent position x by join-

ing q-qS, and on it taking

x^x = Psin Sx = Psin Sx^ very approximately

(for the difference between P sin Sx and P sin Sx^ is

exceedingly small, and may be neglected).

The terms Parallax in Latitude and Parallax in
Longitude are used to designate the corrections for parallax

which must be applied to the celestial latitude and longitude

of a star respectively. Similarly, the parallax in decl. and

parallax in R.A. denote the corresponding corrections for

the decl. and R.A.
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356. To show that any star, owing to parallax,
appears to describe an ellipse.

In Fig. 117, Ex' is parallel to tlie star's heliocentric direc-

tion ; therefore, x is fixed, relative to the Earth. Moreover,

x'x = E8. Hence, as the Sun >S* appears to revolve about

the Earth in a year, the star x will appear as though it

revolved in an equal orbit about its heliocentric position x ^ in

a plane parallel to the ecliptic.

Fig. 119.

Let the circle JfzY (Fig. 119) represent this path, which the

star x appearsto describe in consequence of parallax. This circle

is viewed obliquely, owing to its plane not being in general

perpendicular to Ex'\ hence, if «?« denote its projection on the

celestial sphere, the laws of perspective show that mn is an
ellipse. (Appendix, 12.) This small ellipse is the curve

described by the star on the celestial sphere during the year.

Particular Cases.—A star tn the e£lip tic moves as if it

revolved about its mean position in a circle in the ecliptic

plane, hence its projection on the celestial sphere oscillates

to and fro in n fifmniht linp (more accurately a small arc of a
great circle) of length 2P.

For astar in the mie of the echp tic the circle MN is per-

pendiciilar to Ex' ^ hence Ex describes a right cone, and the

projection x describes on the celestial sphere a circUj of

angular radius P, about the pole Ej^

If the eccentricity of the Earth's orbit be taken into account, the
curve MN will be an ellipse instead of a circle, but its projection
mn will still be an ellipse.
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357. Major and Minor Axes of the Ellipse. —We
shall now prove the following properties of the small ellipse

described during the course of the year by a star whose
parallax is P, and celestial latitude I.

(i.) (a) The length of the semi-axis major is P.

(b) TJie major axis is parallel to the ecliptic.

(c) When the star is displaced along the major axis it

has no parallax in latitude.

(d) At these times the Sunh longitude differs from the

star's hy 90°.

(ii.) (a) The length of the semi-axis minor is Psinl.

(b) The minor axis is perpendicular to the ecliptic.

(c) When the star is displaced along the minor axis it

has no parallax in longitude.

(d) At these times the Sun''s longitude is either equal to

the star's, or differs from it hy 180°.

On the celestial sphere let x^^ denote the heliocentric

position of the star, ABA'B' the ecliptic, A" its pole, BKx^B
the secondary to tl e ecliptic through the star.

Then, if S is the Sun, the star x^ is displaced to x, where

x^pc = P sin XqS.
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(i.) The displacement is greatest when sin x^S is greatest,

and this happens when

If, therefore, we take A, A* on the ecliptic so that

x^A = x^A' = 90°,

A, A' are the corresponding positions of the Sun.

jSTow a, A' are the poles of BKB^ (Sph. Geom., 11, 14^

15), and therefore the great circle ^.r^^' is a secondary to

BKB' . Hence, if a, a! denote the displaced positions of the

star, aa is perpendicular to KB^ and is therefore, parallel to

the ecliptic.

Also, x^a = x^d = P sin 90° = P
;

therefore the semi-axis major of the ellipse is P.

Since AB = A'B = 90°, the star's longitude ( rB) differs

from the Sun's longitude at A or A' by 90'^.

And since the star is displaced parallel to the ecliptic, its

latitude, or angular distance from the ecliptic, is unaltered,

and therefore the parallax in latitude is zero.

(ii.) The parallactic displacement is least when sin ir^fS is

least, and this happens when S is at B. For (Sph. Geom.,

26) B is the point on the ecliptic nearest to x^. Also, since

sin XqB' = sin (180°— a;„P) = sin x^B,

it follows that the parallactic displacement is also least when
S is at B'.

If, therefore, h, h' be the extremities of the minor axis, the

arc bb' is along ICB, and is therefore perpendicular to the

ecliptic.

Also, xj) = xj)' = P sin x^B = P sin Z

;

therefore the semi-axis minor is P sin I.

When the Sun is at B, it has the same longitude as the

star; when at B\ the longitudes differ by 180°,

And since the star is displaced in a direction perpendicular

to the ecliptic, its longitude T -S is unaltered ; therefore the

parallax in longitude is zero.



290 ASTIJOXOJIY.

The parallax in latitude is evidently equal to the apparent

angular displacement of the star resolved parallel to x^K, and
its maximum value is xj), or xj)'. The parallax in lono-itude

is not equal to the star's angular displacement perpendicular

to I{Xq, but to the change of longitude thence re.^ulting, and
this is measured by the angle icKx^. Hence, in Fig. 120,

(i.) The maximum parallax in latitude =z T^^h = I* sin I.

(ii.) The maximum parallax in longitude = Z o'^Ka

=: dc^Kd = x^a/sin Jltq (Sph. Geom. 17)=P/cos x^B
= J* sec 7.

358. To determine the Annual Parallax of any
Star, the following methods have been employed :

—

(i.) The absolute method, by the Transit Circle

;

(ii.) Bessel's, or the differential method, by the micrometer
or heliometer

;

(iii.) The photographic method.

The absolute method consists simply in observing with
the Transit Circle the apparent decl. and II.A. of a star at

different times in the year. From the small variations in

these coordinates it is possible to find the star's parallax.

Although this method has been successfully employed, it

possesses many disadvantages. Por the observations are con-

siderably affected by errors of adjustment of the Transit

Circle a id by refraction. Moreover, several other causes

give rise to variations in the star's apparent decl. and R.A.
during the year. These include aberration (vide Section IV.),

precession (§ 141), and nutation, all of which' produce dis-

placements much larger than those due to parallax.

In § 372 we shall see that when either the latitude or longi-

tude is most affected by parallax it is unaffected by aberra-

tion. Hence the best plan is to find the changes in these

coordinates when they are respectively most affected by
parallax. These changes are Psin I and Psec I (§ 357) and
from them P may be found.

359. Bessel's Method consists in observing with a micro-

meter (§ 79) or heliometer (§ 80) the variations in the

angular distance and relative position of two optically near

etai"s during the course of a year.
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The stars, being nearly m the same direction, are very

nearly equally affected by refraction, and we may also men-
tion "that the same is true of aberration, precession and

nutation. These corrections do not therefore sensibly affect

the relative angular distance and positions of the stars. On
the other hand, the two stars may be at very different dis-

tances from the Earth ; if so, they are differently displaced

by parallax, and their angular distance and position undergo

variations depending on their relative parallax or diference of

parallax. Hence, by observing these Aaiiations during the

year the difference of parallax can be found.

This method does not determine the actual parallax of

either star. But if one of the observed stars is very bright

and the other is very faint, it is reasonable to assume that

the former is comparatively near the Earth, while the latter

is at such a great distance away that its parallax is insensible.

Under such circumstances the observed relative parallax is

the parallax of the bright star alone. By niaking compari-

sons between the bright star and several different faint stars

in its neighbourhood, this point may be settled.

If a considerable discrepancy is found in the observed

relative parallaxes, one or more of the comparison stars must
themselves have ajipreciable parallaxes, but since the vast

majority of stars in any neighbourhood are too distant to have

a parallax, we shall be able to find the parallax not only of

the star originally observed, but of that with which we had
first compared it.

The parallax of a star can never he negative; if the relative

parallax should be found to be negative, we should infer that

the comparison star has the greater parallax, and is therefore

nearer the Earth.

360. The Pliotographic Method is identical in prin-

ciple with the la>t, but instead of observing the relative

distances of different star3 with a micrometer, portions of the

heavens are photographed at different seasons, and the dis-

placements due to parallax arc ' measured at leisure by
comparing the positions of any star on the different plates.

This method has been used by Dr. Pritchard, of Oxford, and

possesses the advantages of great accuracy, combined with

convenience.
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361 . Parallaxes of certain Fixed Stars.—The nearest

stars are a Cenfauri, with a parallax of 0-75", and 61 Cygni,

with parallax 0-54". Among others, the following may be

mentioned: a Lyrm^ 0-18", Sirius, 0'2", Arcturus, 0-13",

Polaris, 007", a Aquila, 19". Of these, 61 Ci/ffni is hj
no means bright ; and a companion star to Sirius is invisible

in all but two or three of the best telescopes. So it is not an

invariable rule that faint stars are most distant, and have no

appreciable parallax ; it is, however, true in the great majority

of cases.*

362. Proper Motions.—Binary Stars.—Many stars,

instead of being fixed in space, are gradually changing their

positions. They are then said to have a proper motion.
This motion may partly belong to the star, but is also partly

an apparent motion, due to the fact that the solar system is

itself moving through space in the direction of a point in the

constellation Hercules. The displacement due to this cause

can be allowed for approximately.

Many of these motions, 1 ike that of ourown Sun, are apparently

progressive ; i.e., the star moves with constant velocity and

in the same direction. Others are orbital, i.e., the star

revolves about some other star, or (more accurately) two
stars revolve about their common centre of mass. Such a

system of stars is called a Binary Star. It is usually seen by
the naked eye as a single heavenly body, its components

being too near to be distinguished. Frequently a system of

stars has itself a progressive motion ; and sometimes an

apparently progressive motion may really be an orbital one,

with a period so long that the path has not sensibly diverged

from a straight line during the short period for which stellar

motions have been watched.

A progressive or orbital motion cannot be confounded with

the displacement due to annual parallax, for the former is

always in the same direction, and the latter has a period dif-

fering from a year, while parallax always produces an annual

variation.

* These figures can only be regarded as very rough approxima-
tions, for considerable discrepancies exist between the values found
by different methods. »



THE DISTANCES OF THE SUN AND STARS. 293

Section IV.

—

The Alerration of Light.

363. Velocity of Light.— We now como to certain

methods of finding the Sun's distance which depend on the
fact that light is propagated through space with a kirge but
measurable velocity.

The velocity of light has been measured by laboratory

experiments in two different ways, invented by two French
physicists, Eizeau and Foucault. For the description of these

the reader is referred to Wallace Stewart's Text Boole ofLights
Chapter IX.* The experiments give the velocity of light in

air ; the velocity in vacuo can be obtained by multiplying
this by the index of refraction of air.f The latter quantity

may be found cither by direct experiment or from the coeffi-

cient of astronomical refraction (see § 183).

In 1876, Cornu, by employing Fizeau's method, found the
velocity of light in vacuo to be 300,400,000 metres per second.

Still more recently, Michelson, by a modification of Foucault's

method, has found the velocity to be 299,860,000 metres,

or 186,330 miles per second ; this may be taken as the

most probable value.

364. Roemer's Method.—The Equation of Light.—
In the last chapter we stated that Jupiter has four satellites,

which revolve very nearly in the plane of the planet's orbit.

Consequently a satellite passes through the shadow cast by
Jupiter once in nearly every revolution, and is then eclipsed,

as is our jVIoon in a lunar eclipse.

Since the orbits and periods of the satellites have been
accurately observed, it is possible to predict the recurrence

of the eclipses, so that when one eclipse has been observed

the times at which subsequent eclipses will begin and end
can be computed.

^ow, the Danish astronomer Eoemer in 1675 observed a
remarkable discrepancy between the predicted and the

observed times of eclipses. If of two eclipses one happens
when Jupiter is near opposition, and the other happens near

the planet's superior conjunction, the observed interval

* The student will find it useful to read this chapter before com«
niencing the present section,

t Stewart's LxqM, § 41.
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between the former and the latter is ahvays greater than the
computed interval ; similarly the observed interval between
an eclipse 'near superior conjunction and the next eclipse

near opposition is always less than the computed inter\al.

Tlie eclipses at conjunction are thus always retarded, relatively

to those at opposition, by an interval of time which is observed
to be about 16m. 40s. As explained by lloemer, this apparent
retardation is due to the fact that light travels from Jupiter
to the Earth with finite velocity, and therefore takes 16m.
40s. longer to reach the Earth when the planet is furthest

away at superior conjunction {B) than when the planet is

nearest the Earth at opposition (A).

The relative retardation is the difference between the times
taken by the light to travel over the distances ^/i'and HE.
But BE—AE— 2SE. Therefore the retardation is twice the

time taken hy the light to travel from the Sun to the Earth.
Taking the retardation as 16ra. 40s., we see that light takes

8m.. 20s. to travel from the Sun to the Eartli.

This interval is sometimes called the '-'•equation of light.
"^

If we know the equation of light and the velocity of light,

we may calculate the Sun's distance. Conversely, if the

Sun's distance and the equation of light are known, the
velocity of light can bo determined.

Knowing the Sun's distance, the Sun's parallax can be
computed, as in Chapter Till., Section I. The present

niethod differs from those described in Sections I., II., in

that it gives the distance instead of the parallax of the Sun.
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Example 1.—To find the Sun's distance, having given that the

velocity of light is 186,330 miles per second, and that eclipses of

Jupiter's satellites which occur when the planet is furthest from

the Earth, are retarded 16m. 40s. relatively to those which occur

when the planet is nearest.

Here the time taken by light to pass over a diameter of the

Earth's orbit is 16m. 403. ; therefore light travels from the Sun to

the Earth in 8m. 20s., or 500 seconds.

.-. the Sun's distance = 186.330 x 500 miles
= 93,165,000 miles.

Example 2.—Taking the value of the Sun's distance calculated in

the preceding example, the Sun's parallax will be found to be
about 8-78".

'

365. The Aberration of Light is a displacement of the

apparent directions of stars, due to the effect of the Earth's

motion on the direction of the relative velocity with which
their light approaches the earth.

The rays of light emfmatiiig from a star travel in straight

lines through space* with a velocity of ahout 186,330 miles

per second. We see the star when the rays reach our eye,

and the appearance presented to us depends solely on how
the rays are travelling at that instant. If tlie Earth were
at rest, and there were no refraction, we should see the star

in its true direction, because the light would be travelling

towards our eyes in a straight line from the star. But in

every case the direction in which a star is see7i is the direction

of approach of the light-rays from the star at the instant of

their reaching the eye.

Now the velocity of approach is the relative velocity of the

light with respect to the observer. If the observer is in

motion, this relative velocity is partly due to the motion
of the light and partly due to the motion of the ob-

server. If the observer happens to bo travelling towards
or away from the source of light, the only effect of

his motion will be to increase or decrease the velocity of

approach of the light, without altering its direction, but if he
be moving in any other direction, his own motion will alter

the direct iou of the relative velocity of approach, and will

therefore alter the direction in which the star is seen,

* Of course the rays are refracted when they reach the Earth's
atmosphere, but the effects of refraction can be allowed for separately.
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Suppose the light to be travelling from a distant star x
in the direction xO. Let F"be the velocity of light, and let

it be represented by the length MO. Suppose also that an

observer is travelling along the direction iV'O with velocity u,

represented by the straight line JVO. Then, if we regard

as a fixed point, the light is approaching with velocity re-

presented by MO. Also since the observer is approaching

with velocity represented by NO, the point is approaching

\ he observer iV^with an equal and opposite velocity repre-

sented therefore by ON. Hence the whole relative velocity

with which the light is travelling towards the observer is

the resultant of the velocities represented by MO and ON.

N/-JO_

By the Triangle of Velocities this resultant velocity is repre-

sented in magnitude and direction by MN Hence MN
represents the direction of approach of the light towards the

observer's eye. Therefore when the observer has reached

the star is seen in the direction Ox drawn parallel to N3f,

although its real direction is 0.r,

In consequence, the star appears to be displaced from its

true position x to the position x' . This displacement is

called the. aberration of the star, and its amount is, of

course, measured by the angle x Ox. This angle is sometimes

called the angle of aberration or the aberration error.

366. Illustrations of Eelative Velocity and Aberration.—The
following simple illustrations may possibly assist the reader in

understanding more thoroughly how aberration is produced.

(1) Suppose a shower of rain-drops to be falling perfectly

vertically, with a velocity, say, of 40 feet per second. Then,

if a man walk through the shower, say with a velocity of 4 feet
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per second, the drops will appear to be coming towards. him, and

therefore to be falling in a direction inclined to the vertical. Here
the man is moving towards the drops with a horizontal velocity of

4 feet per second, and therefore the drops appear to be coming
towards the man with an equal and opposite horizontal velocity of

4 feet per second.

Their whole relative velocity is the resultant of this horizontal

velocity and the vertical velocity of 40 feet per second with which

the drops are approaching the ground. By the rule for the compo-

sition of velocities, this relative velocity makes an angle tan-' /^J or

tan-' -1 with the vertical. Hence the man's own motion causes an

apparent displacement of the direction of the rain from the vertical

through an angle tan"' "l. This angle corresponds to the angle of

aberration in the case of light.

(2) Suppose a ship is sailing due south, and that the wind is blow-

ing from due west with an equal velocity. Then to a person on the

ship the wind will appear to be blowing from the south-west, its

southerly component being due to the motion of the ship, which is

approaching the south. In this case the ship's velocity causes the

wind to apparently change from west to south-west, i.e., to turn

through 45°. We might, therefore, consistently say that the
" angle of aberration " of the wind was 45°.

367. Annual and Diurnal Aberration.—A point on

the Earth's surface is moving through space "svith a velocity

compounded of

(i.) The orbital velocity of the Earth in the ecliptic about

the Sun
;

(ii.) The velocity due to Earth's rotation about the poles.

These give rise to two different kinds of aberration, known
respectively as annual and diurnal aberration. !N"ow the

Earth's orbital velocity is about 27r x 93,000,000 miles per

annum, or rather over 18 miles per second, while the

velocity due to the Earth's rotation at the equator is roughly

277X4000 miles per day, or 0-3 miles per second. The
former velocity is about toWo o

^^ *^^ velocity of light, and

therefore the annual aberration is a small though measurable

angle. The latter velocity is only -^\ as great ; hence the

diurnal aberration is much smaller and less important. Eor

this reason the term "aberration" always signifies annual

aberration, unless the word "diurnal" is also used. We shall

now consider the effects of annual aberration, leaving diurnal

aberration till the end of this section.
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368. To determine the correction for aberration
on the position of a Star.—Let Ox be the actual direction

of a star x seen from the Earth at ; OTJ tlie direction of the

Earth's orbital motion at the time of observation. On Ox
take J/ representing on any scale the velocity of light, and
draw ifF parallel to 0Z7, and representing on the same scale

the velocity of the Earth. Then YO represents the relative

velocity of the light in magnitude and direction, so that OYx
is the direction in which the star x is seen (Fig. 123).

[For if Oi^ be drawn j^arallel and equal to Fif, the parallelogram
of velocities M'SOY shows that MO, the actual velocity of the light-

rays in space is the resultant of the two velocities YO and 1^0, or
YO and MY, and therefore YO is the required relative velocity.]

Fig. 123. .
Fig. 12i.

Since Ox^ Ox, and U all lie in one plane, it follows, by

representing their directions on the celestial sphere, that a

star is displaced ly aberration along the great circle joining its

true place to the point on the celestial sphere towards which the

Earth is moving.

The displacement xOx is called the star's aberration,

error. Let it be denoted by y, and let

u — NO — velocity of Earth,

F'= MO = velocity of light.

Then the triangle OMY gives

sinl/OF^ifF^ w.

sini/ro MO r'

or sin y = -^ sinMYO = -^ sin UOx'.
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The ateiTation error y is, therefore, greatest when TJOai^

= 90°. Let its value, then, he h. Putting TJOx — 90°, we
have sin A; = ulV\
and .*. sin y = sin 7b sin TJOx,

The angle TTOx' is called the Earth's Way of the star,

and k is called the Coefficient ofAberration. Since a and

k are both small, we have, approximately

y = ^ sin (Earth's way),

k (in circular measure) = w/F";

and, therefore, if y", k" denote the number of seconds in y, k
respectively

y" = k" sin (Earth's way),

,,r_ 180x60x60 i£

velocity of Earth
ss 206,265 X—-.—rf -.. ,.' velocity of light

369. General effect of Aberration on the Celestial

Sphere.—Neglecting the eccentricity of the Earth's orbit,

the direction of motion of the Earth, in the ecliptic

plane, is always perpendicular to the radius vector drawn to

the Sun. Hence, on the celestial sphere, the point U^ towards

which the Earth is moving, is on the ecliptic, at an angular

distance 90° behind the Sun, This point is sometimes called

the apex of the Earth's Way.

Let x' denote the observed position of the star. Draw the

great circle ^r' U, and produce it to a point x , such that

xx' =zh QmxfU.

Then x represents the star's true position, corrected for

aberration.

Conversely, if we are given the true position x, we can find

the apparent position x! by joining xU d^n^ taking

xx' = k mix U,

for it is quite sufficiently approximate to use k sin a; JT" instead

of k sin x^ U.

ASTEON. X
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We tlius have the following laws :

—

(i.) Aberration produces displacement in the apparent

position of a star towards a point U on the ecliptic, distant 90°

behind the Sun.

(ii.) The amount of the displacement varies as the sine of the

Earth's Way of the star, i.e., the starts angular distance

from the point U.

Fig. 125.

370. Comparison between Aberration and Annual
Parallax.—The student mil not fail to notice the close

analogy between the corrections for aberration and annual
parallax.

The point 27" for the former corresponds to the point S for

the latter, in determining the direction and magnitude of the

displacement. In fact, the aberration error of a star is exactly

the same as its parallactic correction would be three months earlier

(when the Sun was at U) ifthe starts annual parallax were h.

There is, however, this important difference that the annual
parallax depends on a starts distance, whilst the constant of
aberration h is the same for all stars.

Por Tc depends only on the ratio of the Earth's velocity to

the velocity of light, and not on the star's distance. The
value of h in seconds is about 20*492" ; for rough purposes it

may be taken as 20*5".
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371. To show that the aberration curve of a star is

an ellipse.—This result, which follows immediately from the

analogy between aberration and parallax, may be proved inde-

pendently as follows:—On Ox (Fig. 125), the true direction

of a star x, take Ox to represent the velocity of light, and
xM to represent the Earth's velocity. Then MO meets the

celestial sphere in m, the star's apparent position.

As the Earth's direction of motion in the ecliptic varies,

while its velocity remains constant, Ji'describes a circle about

x as centre in a plane parallel to the ecliptic plane. The
projection of this circle on the celestial sphere is an ellipse

(of. § 356), and this is the curve traced out by a star during
the year in consequence of aberration.

Particular Cases.—A star in the ecliptic oscillates to

and fro in a straight line, or more accurately an arc of a great

circle of length 2h. A star at the pole of the ecliptic revolves

in a small circle of radius h {cf. § 356).

372. Major and Minor Axes of the Aberration
Ellipse.—By writing [7 for S and k for P in the investiga-

tion of § 357, we obtain the analogous results relating to the
ellipse described by a star in consequence of aberration,

namely :

—

(i.) (a) The length of the semi-axis major is h.

(b) The major axis of the ellipse is parallel to the ecliptic.

(c) When the star is displaced along the major axis it has no

aberration in latitude.

(d) At these times the Sun's longitude is either equal to the

starts, or differs from it hy 180°.*

(ii.) (a) The length of the semi-axis minor is Tc sin I.

(b) The minor axis is perpendicular to the ecliptic.

(c) When the star is displaced along the minor axis, it has no

aberration in longitude.

(d) At these times the Sun^s longitude differs from the starts

hy 90°.

CoROLLAET.—The maximum aberration inlongitude = X; sec?

{cf § 357, ii.).

* Note that (i., d) and (ii., d) are the reverse of the corresponding
properties in § 357.
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*373. Effect of Eccentricity of Earth's Orbit.—Owing to the
elliptic form of the Earth's orbit the Earth's velocity is not quite
uniform, and therefore the coefficient of aberration is subject to

small variations during the year. The earth's velocity is greatest

at perihelion and least at aphelion. The angular velocities at those
times are inversely proportional to the squares of the corresponding
distances from the Sun, but the actual (linear) velocities are in-

versely proportional to the distances themselves, and these are in

the ratio of 1— e : 1 + e, or 1 - g^ '• 1 + ro (§ 149). Since the coeffi-

cient of aberration is proportional to the Earth's velocity, its

greatest and least values are therefore in the ratio of 61 : 59, and
are respectively

-J}^
aiid

-J;-^
of its mean value.

Moreover, the direction of the Earth's m^otion is not always
exactly perpendicular to the line joining it to the Sun, hence the
" apex of the Earth's way," towards which a star is displaced, may
be distant a little more or a little less than 90° from the Sun at

different seasons.

The aberration curve is still an ellipse. The student who
has read the more advanced parts of particle dynamics may know
that the curve MN, traced out by M, is in this case the "hodograph "

of the Earth's orbital motion. It is also known, in the case of

elliptic motion, such as the Earth's, that this hodograph is a circle,

whose centre does not, however, quite coincide with x. Hence the
aberration-curve hlc is an ellipse.

374. Discovery of Aberration.—Aberration was dis-

covered by Bradley, in 1725, in the course of a series of

observations made with a zenith sector on the star y Draconis

for the purpose of discovering its annual parallax. The star's

latitude was observed to undergo small periodic variations

during the course of .the year, and these differed from the

variations due to annual parallax in the fact that the dis-

placement in latitude was greatest when the Sun^s longitude

differedfrom thit of the stars ly 90°
; that is, at the time when

the parallax in latitude should he zero (§ 357, i., c). The fact

that the phenomenon recurred annually led Bradley to suppose

that it was intimately connected with the Earth's motion
about the Sun, and he was thus led to adopt the explanation

which we have given above, It will be seen that the pecu-

liarity which led Bradley to discard annual parallax as an
explanation is quite in harmony with the results of § 372.

375. To Determine the Constant of Aberration by-

Observation.—The constant k can best be found by observ-

ing different stars with a zenith sector or transit circle, as in

the direct method of finding a star's parallax (§358).
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The differential method of § 359 cannot he used, hecauso

the coefficient of aberration is the same for all stars. But
aberration is much larger than parallax (the coefficient of

aberration being 20 '49", while the greatest stellar parallax

is < 1"), and can therefore be found directly with greater

accuracy. Of course it is necessary to make corrections for

refraction and precession. The former correction is the most
liable to uncertainty, as it varies slightly according to atmo-
spheric conditions. Eut, as all stars have the same constant

of aberration, a star may be selected which transits near the

zenith, and is therefore but little affected by refraction.

This condition was secured by Bradley when he observed

the star y Draconis. The star is very favourable in another

respect, for its longitude is very nearly 270°. It therefore

lies very nearly in the "solstitial colure," its declination

circle passing nearly through the pole of the ecliptic.

At the vernal equinox, the star's longitude is less than the
Sun's by 90°, and it is therefore displaced away from the
poles of the ecliptic and equator through a distance h" sin I,

its declination being therefore decreased by Ic" sin /. At the

autumnal equinox its declination is increased by 7^" sin I.

Hence the difference of the apparent declinations= 2k'' sin /,

and this is also the difference of the star's apparent meridian
zenith distances. By observing these, yk" may be found,
I being of course known.
The value of k" is very approximately 20'493".
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376. Relation between the Coefficient ofAberration
and the Equation of Light.—We have seen (§ 368) that

,„_ 180x60x60 u ,. .

^ — ^ V-)^
IT y

where Z;" is the coefficient of aberration in seconds, u the

velocity of the Earth, Fthat of light, both of which we will

suppose measured in miles per second.

Now let r represent the radius of the Earth's orbit (sup-

posed circular) in miles. Then in one sidereal year, or 365^
days, the Earth travels round its orbit through a distance

27rr miles. Hence the Earth's velocity in miles per second is

_ 27ir
^~ 365ix 24X60X60*

Substituting in (i.), we have

1c" = -^ —
3651 r'

But r/ Vis the time taken by the light to travel from the

Sun to the Earth, measured in seconds, or the *' equation of

light." Hence,

The coefficient of aberration in seconds

15= . X number of seconds taken by Sun's light to
36^4 reach Earth.

Thus, by observing the retardation of the eclipses of

Jupiter's satellites at superior conjunction, the coefficient of

aberration can be found independently of the methods of

§ 375, the number of days (365^) in the sidereal year being

of course known.

The close agreement between the values found thus and

by direct observation affords the strongest evidence in support

of Bradley's explanation of aberration.

Example.—To find the coefficient of aberration in seconds, having
given that light takes 8m. 20s. to travel from the Sun to the Earth.

Here the required coeflBcient of aberration

Jc" = l^^^^ _ '^500 _ 20-584"
865i~ -365-25 ^" ''*'* '
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377. To find the time taken by the light from a

star to reach the Earth.—It is sometimes convenient to

estimate the distance of a star by the number of years which
the light from it takes to reach the Earth. This may be

determined from a knowledge of the star's parallax, and of

the coefficient of aberration, without knowing either the Sun's

distance or the velocity of light.

Let the parallax of a star be = F" in seconds = F radians,

and let the coefficient of aberration = k" seconds = k radians.

Then, if r, d be the Earth's and star's distances from the

Sun, we have

P — £ Z;
— velocity of Eai-th

d
'

velocity of light

Now, in one year, the Earth travels over a distance 27rr

;

.-.in one year light travels a distance —=—

;

K

.-. the number of years taken by light to travel from the

star (distance d) to the Earth

= d — l—\ — ^^ — ^ — ^
'

\ k )
~ 27rr~ 2irF ~ 2irP"'

The distance travelled by light in a year is sometimes

called a " Ught;;2ear." Hence,

The product of a star's parallax and its distance in light-

years is equal to the coefficient of aherration divided hy 27r.

Examples.—1. To find how long the light would take to reach us
from a star having a parallax O'l".

The required time, in years,

1 Ic" 10 X 20-49 X 7 . . ,

=2;6i:—Tx22~ ^pp^°^^™^*«iy

= 32-6.

2. To find the time taken by the light from the nearest star,

o Centauri, taking its parallax as 0'75''.

The parallax is 7"5 times that of the star in the last question,
therefore its distance is 10/75 as great, and the time taken by the

light ^m^ ^'^^ ^^^^^'
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378. Relation between the Coefficient of Aber-
ration, the Sun's Parallax, and the Velocity of Light.
—It follows from § 376 that if the coefficient of aberration

h" be determined by observation, tbe fraction rjV is also

known, independently of observations of the eclipses of

Jupiter's satellites. And if F", the velocity of light, be deter-

mined experimentally by the method of Foucault or Pizeau,

the Sun's distance r can be found. Thus the Sun's parallax

can be calculated from the coefficient of aberration and the
velocity of light. And generally, if, of the four quantities,

Sun's parallax, coefficient of aberration, velocity of light, and
length of sidereal year in days, any three are observed, the

value of the fourth may be deduced from them.
In this manner Eoucault, by his determination of the

velocity of light, in 1862, found the Sun's parallax to be 8-86".

Cornu, by experiments in 1874 and 1877, combined with the

values for h" determined by Struve, obtained the values
8-83" and 8*80" respectively. Michelson's experiments make
the parallax 8-793".

Example.—If the velocity of light = 186,000 miles per second
and the Earth's radius (o) = 3,960 miles, to prove that the product
of the Sun's parallax and the coelEcient of aberration, both measured
in seconds, is 180'35.

The Sun's parallax P" = ^^Q^^Q^^Q
^,

T r

, w, 15 r 60 r
and IS = =

;365i V 1461 F*

. p// if,n ^ 180 X 60 X 60 X 60 a 206265 x 60 3960

146l7r V 1461 186000

= 180-35.

379. Planetary Aberration.—The direction of any
planet is affected by aben-ation, which is due partly to the
motion of the Earth, and partly to that of the planet itself.

For, during the time occupied by the light in travelling

from a planet to the Earth, the planet itself will have moved
from the position which it occupied when the Kght left it.

We shall, however, show that the direction in which a
planet is seen at any instant was the actual direction of the

planet relative to the Earth at the instant previously when the

light left the planet.
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Let t be the time required by tbe ligbt to travel from

the planet to the Earth. Let P, Q be the positions of the

planet and Earth at any instant ; P, Q their positions after

an interval t.

The light which leaves the planet when at P reaches the

Earth when it has arrived at Q, ; the direction of the actual

motion of the light is, therefore, along FQ. But FQ and

QQ are the spaces passed over by the light and the Earth

Fig. 128.

respectively in the time t (and QQ is so small an arc that it

may be regarded as a straight line). Therefore

QQ' : FQ^ = velocity of Earth : velocity of light.

Hence it follows from § 368 that the line FQ represents the

direction of relative velocity of the light with respect to the

Earth. Therefore, when the Earth is at Q the planet is seen

in a direction parallel to PQ, and its apparent direction

is exactly what its real direction was at a time t previously.

The same is true in the case of the Sun or a comet, or

any other body, provided that the time taken by the light

from the body to reach the Earth is so small that the Earth's

motion does not change sensibly in direction in the interval.

The aberration of the planet at any instant is the angle
between the apparent direction FQ and the actual direction

F'q.
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Example.—To find the effect of aberration on the positions of (i.)

the Sun, (ii.) Saturn in opposition, taking its distance from the
Sun to be 9J times the Earth's.

(i.) The light takes 8m. 20s. to travel from the Sun to the Earth
therefore the Sun's apparent coordinates at any instant are its actual
coordinates 8m. 20s. previously. Thus, its apparent decl. and R.A.
at noon are its true decl. and R.A. at 23h. 51m. 40s., or llh. 51m.
40s. A.M.

Now the Sun describes 360° in longitude in 365^ days. Hence, in

500 seconds it describes 20'492", and the Sun's aberration in longi-

tude is 20'492". This is otherwise evident from the fact that the
Earth's way of the Sun is 90°; and it is at rest, consequently its

aberration = Tc.

(ii.) The distance of Saturn from the Earth at opposition is

= 9^—1, or 8^ times the Sun's distance. Light travels over this

distance in 8m. 20s. x 8^ = 500 x 8|s. = Ih. 10m. 50s. Therefore,

the apparent coordinates are the actual coordinates Ih. 10m. 50s.

previously.

Thus the observed decl. and R.A. at midnight (12h. Cm. Os.) are the

true decl. and R.A. at lOh. 49m. 10s.

380. Diurnal Aberration is due to tte effect of the

Eartli's (Ihirnal rotation about the poles on the relative velo-

city of light.

As the Earth revolves from west to east, the portion of the

motion of an observer due to this diurnal rotation is in the

direction of the east point E of the horizon.

The effect of diurnal aberration can thus he investigated

by methods precisely similar to those of § 368, E taking the

place of U.*

Hence, every star x is displaced by diurnal aberration

towards the east point E. And if x' be its displaced position,

then
the displacement xx' = A sin xE,

where

r^^^ j> a velocity of observer
Circular measure of ^ = —

4^ . ^. -
^

.

velocity 01 light

* The student will find it useful to go through the various steps

of §§ 368-371, considering the diurnal motion.
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Taking a for the Earth's radius, Ffor the velocity of light,

let the observer's latitude be I.

In a sidereal day (86164-1 mean seconds) the Earth's

rotation carries the observer round a small circle, whose dis-

tance from the Earth's axis is a cos I, and whose circumference

is, therefore, ^-rra cos I. Hence, the observer's velocity

2ira cos I ^^ -,= miles per second
;

86164-1
^ '

2Tra cos I
'. circular measure of -4 =

86164-1 X F'

.*. A" (number of seconds in A)

__ 180x60x60 27ra cos I"
TV

^ 861641 r
15fl!C0sZ . - 1= —— approximately.

Thus, the coefficient of diurnal aberration varies as the

cosine of the latitude. If X" denote the coefficient of

diurnal aberration at the equator in seconds, we therefore,

have

g-// ^ 15a ^ 15x3963 ^ „

V 186,000
'

A" = k" cos I = 0-32 " cos I.

* Effect of Diurnal Aberration on Meridian Observations.

The correction for diurnal aberration is greatest when the star

is 90° from the east point, i.e., is on the meridian. In this case,

the displacement is perpendicular to the meridian, and is equal
to A".

The star's meridian altitude is thus unaffected, but its time of

transit is somewhat retarded at upper culmination, and (for a cir-

cumpolar star) accelerated at lower culmination, since the star

appears on the meridian, when it is really A" west of the meridian.
The effect of diui-nal aberration on the time of transit is thus equi-

valent to that of a small collimation error A" in the Transit Circle.

For a star on the equator, seen from the Earth's equator, the
retardation of the time of transit would be iV ^" seconds, = -^
of a second nearly, and it would be difficult to observe such a small
interval.
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381. To determine the Coefficient of Diurnal Aber-
ration by Observations of the Azimuths of Stars
when on the Horizon.
When a star is rising or setting it is evidently displaced by

diurnal aberi'ation along the horizon towards the east point.

Consider two stars, one of which rises S. of E., and the other

^N". of E. It is evident that their rising points are drawn
towards one another. But the stars set S. of "W. and 'N.

of W., and their displacements are still towards the E.

point ; hence, their setting points are separated away from
one another. And, if the stars, at rising and setting, be
carefully observed with an altazimuth, the difference between
their azimuths at setting will exceed that between their

azimuths at rising by an amount proportional to the diurnal

aberration. Erom this, the coefficient of diurnal aberration

may be found.

The azimuths are unaltered by refraction (§ 184), but the times
of rising and setting are slightly altered by refraction. If the co-

eflScient of refraction be the same at both observations, however,
the acceleration in rising will be equal to the retardation at setting,

and the refraction will increase the azimuths at lising and setting

by the same amount ; thus the data will be unaffected. If the tem-
perature of the air has changed considerably between rising and
setting, it is only necessary to make the observations at equal

intervals before and after the stars transit.

382, Relation between the Coefficients of Aberra-
tion and the Sun's Parallax.—We have evidently

K" _ velocity of diurnal motion at equator

k" velocity of Earth's orbital motion

But the velocities in miles, per sidereal day, are 2Tra and
27rr/366i;

If" _ 1 ^'f _ 1 vx (Sun's parallax in circular
***

"F
"~

366i
^ 7 ~ 366i measure).

This gives the coefficient of diarnal aberration at the equa-

tor in terms of the coefficient of annual aberration and the

Sun's parallax. Conversely, if it were possible to observe

the coefficient of diurnal aberration accurately, we should

thus have another way of finding the Sun's parallax.

But the smallness of the diurnal aberration renders it im-

possible to obtain good results by this method.
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EXAMPLES.—XI.

1. Prove that cosec 8*76" = 23546 approximately, and thence that

the distance of the Sun is nearly 81 million geographical miles, the

angle 8'76" being the Sun's parallax, and a geographical mile sub-

tending 1' at the Earth's centre.

2. Find the Sun's diameter in miles, taking the Sun's parallax as
8"8", its angular diameter as 33', and the Earth's radius as 3,960

miles.

3. A spot at the centre of the Sun's disc is observed to subtend
an angle of 5". What is its absolute diameter?

4. Show, by means of a diagram, that the general effect of the

Earth's diurnal rotation is to shorten the duration of a transit of

Yenus, and that this circumstance might be used to find the Sun's
parallax.

5. Supposing the equator, ecliptic, and orbit of Venus all to lie in

one plane, and that a transit of Venus would last eight hours, at a

point on the Earth's equator, if the Earth were without rotation ;

show that, if the Sun is vertically overhead at the middle of the
transit, the duration is diminished by about 9m. 55 ^s. owing to the
Earth's rotation, taking the Sun's parallax to be 88", and the syn-

odic period of Venus to be 586 days.

6. If the annual parallax be 2", determine the distance of the star,

taking the Sun's distance to be 90,000,000 miles. Hence, deduce
the distance of a star whose parallax is 02".

7. Find, roughly, the distance of a star whose parallax is 0-5",

given that the Sun's parallax is 9", and the Earth's radius is 4000
miles.

8. The parallax of 61 Cygni is 0'5", and its proper motion, per-
pendicular to the line of sight, is 5" a year ; compare its velocity in
that direction with that of the Earth in its orbit round the Sun.

9. Account for the following phenomena : (i.) all stars in the
ecliptic oscillate in a straight line about their mean places in the
course of the year

;
(ii.) two very near stars in the ecliptic appear to

approach and recede from one another in the course of the year.

10. Suppose the velocity of light to be the same as the velocity of
the Earth round the Sun. Discuss the effect on the Pole Star as
seen by an observer at the North Pole throughout the year.
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11. Sound travels with a velocity 1,100 feet per second. Deter-
mine the aberration produced in the apparent direction of sound to

a person in a railway train travelling at sixty miles an hour, if the
source of sound be exactly in front of one of the windows of the
carriage.

12. Show that, in consequence of aberration, the fixed stars

whose latitude is I appear to describe ellipses whose eccentricity
is cos I.

13. How must a star be situated so as to have no displacement
due to (i.) aberration, (ii.) parallax ? "Where must a star be so that
the effect may be the greatest ?

14. On what stars is the effect of aberration or parallax to make
them appear to describe (i.) circles, (ii.) straight lines ?

15. Show that the effect of annual parallax on the position of a
star may be represented by imagining the star to move in an orbit

equal and parallel to the Earth's orbit, and that the effect of aber-
ration may be represented by imagining it to revolve in a circle

whose radius is equal to the distance traversed by the Earth while
the light is travelling from the star.

16. Supposing the star tj Virginis to be situated (as it nearly is)

at the first point of Libra, find the direction and magnitude of its

displacement due to aberration about the 21st day of every month
of the year, taking the coeflBcient of aberration to be 20'5". When
is its aberration greatest ?

17. At the solstices show that a star on the equator has no aber-

ration in declination. If its R.A. be 22h., show that its time of

transit is retarded at the summer and accelerated at the winter
solstice by '68 of a second.

18. If the coefficient of aberration be 20", and an error of 2,000
miles a second be made in determining the velocity of light, find, in

miles, the consequent error in the value of the Sun's mean distance
as computed from these data.

19. Show that when a planet is stationary its position is unaffected

by aberration.

20. Taking the Earth's radius as 4,000, velocity of light 186,000
miles per second, show that the coefficient of diurnal aberration at

the equator is about one-third of a second.
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MISCELLANEOTJS QUESTIONS.

1. Explain the following terms:

—

asteroid, libration, lunation

parallax, perihelion, planet's elongation, right ascension, synodical

period, syzygies, zenith.

2. Given that the R.A. of Orion's belt is 80°, show by a figure its

position at different hours of the night about March 21 and
September 23.

3. Prove that the number of minutes in the dip is equal to the

number of nautical miles in the distance of the visible horizon.

4. Show how to determine the latitude of a place by meridional

observations on a oircumpolar star, taking into account the refraction

error.

5. Show how to find longitude from lunar distances. The cleared

lunar distance of a star at 8h. 30m. local mean time is 15°0'45", and
the tabular distances are 15°0'0" at 6h. and 15°1'30'' at 9h. of Green-

wich mean time. Find the longitude.

6. At what time of the year can the r, owning moon best be seen ?

7. On July 21 at 2 a.m. the Moon is on the meridian. What is

the age of the Moon ? Indicate the position on the celestial sphere
of a star whose declination is and whose E.A. is 30°.

8. Taking the distance of Yenus from the Sun to be f of that of

the Earth, find the ratio of the planet's angular diameters at superior

and inferior conjunction and greatest elongation, and draw a series

of diagrams showing the changes in the planet's appearance during
a synodic period, as seen through a telescope under the same
magnifying power.

9. Defining a lunar day as the interval between two consecutive
transits of the Moon across the meridian, find its mean length in

(i.) mean solar, and (ii.) sidereal units.

10. At what season is the aberration of a star least whose E.A. is

90° and whose declination is 60° ?

11. Show that the constant of aberration can be determined by
observation of Jupiter's satellites, without a knowledge of the radius
of the Earth's orbit.

12. How is it possible to calculate separately the aberration—the
constant of aberration being supposed unknown—annual parallax,

and proper motion of a star, from a long series of observations of the
apparent place of a star P
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EXAMINATIOIS" PAPEE.—XI.

1. Why is the method for finding the Moon's parallax not available
in the case of the Sun ? Show how the determination of the
parallax of Mars leads to the determination of the Sun's parallax.

2. Show how the Sun's parallax can be found by comparing the
times of commencement or of termination of a transit of Venus at two
stations not far from the Earth's equator.

3. Show how the Sun's parallax can be found by comparing the
durations of a transit of Venus at two stations in high N. and S.

latitudes. "Why is this method not available when the transit is

central ?

4. Distinguish between solar and stellar parallax. Towards what
point does a star seem to be displaced by heliocentric parallax ?

Find an expression for the displacement.

5. Desci-ibe Bessel's method of determining the annual parallax

of a fixed star.

6. How might the Sun's parallax be determined by observations

of the eclipses of Jupiter's satellites ?

7. Explain the aberration of light, and investigate 'the direction

and magnitude of the displacement which it produces on the
apparent position of a star.

8. Show that owing to aberration a star in the pole of the ecliptic

appears to describe a circle, and that a star in the ecliptic appears
to oscillate to and fro in a straight line during the course of the year.

9. Show how the velocity of light may be determined from the
aberration of a star when the Sun's mean distance is known.

10. Investigate the general effects of diurnal aberration due to

the Earth's rotation about its axis. In what direction are stars

dis])laced by diurnal aberration ? Show that the coefficient of

diurnal aberration at a place in latitude I is Kcos I, where K is the
coefficient at the equator.
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CHAPTEE XII.

THE EOTATIOX OF THE EARTH.

383. Introductory.—In the preceding cliapters we have
shown howthe motions of the celestial bodies can be determined

by actual observation, and we have also explained certain

resulting phenomena. Eut no use has yet been made of the

principles of dynamics ; consequently we have been unable

to investigate the causes of the various motions. In par-

ticular, while we have assumed that tlie diurnal rotation of the

stars is an appearance due to the Earth's rotation, we have
not as yet given any definite proof that this is the only pos-

sible explanation.

The ancient Greeks accounted for the motions of the solar

system by means of the Theory of Epicycles^ according to

which each planet moved as if it were at the end of a system
of jointed rods rotating with uniform but different angular
velocities. Suppose AB^ BC, CD to be three rods jointed

together at B, C. Let A be fixed ; let AB revolve uniformly
about A ; let BC revolve with a different angular velocity

about B ; and let CD revolve with another different angular
velocity about C. Then, by properly choosing the lengths and
angular velocities of the rods, the motion of 2), relative to A,
may be made nearly to represent the motion, relative to the
Earth, of a planet.

Copernicus (a.d. loOO circ.) was the first astronomer who
explained the motions of the solar system on th ' theory that

the diurnal motion is due to the Earth's rotation, and that

the Earth is one of the planets which revolve round the Sun.
This theory was adopted by Kepler (a.d. 1609 circ.) whose
laws of planetary motion have already been mentioned (§ 326).

ASTRON. Y
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These laws were, however, unexplained until their true cause

was found by Newton (a.d. 1687) by his discovery of the
law of gravitation.

384. Arguments in Favour of the Earth's Rota-
tion.—Without appealing to dynamical principles, the pro-

bability of the Earth's rotation about its axis (§ 87) may be
inferred from the following considerations :

—

(i.) If the Earth were at rest, we should have to imagine
the Sun and stars to be revolving about it with inconceivably

great velocities. If the Earth rotates, the velocity of a point

on its equator is somewhere about 1,050 miles an hour. But
since the Sun's distance is about 24,000 times the Earth's

radius, the alternative hypothesis would require the Sun—

a

body whose diameter is nearly 110 times as great as that of

the Earth—to be moving with a velocity 24,000 times as

great, or about 25,000,000 miles an hour; while most of the
fixed stars are at such distances from the Earth that they
would have to move with velocities vastly greater than the

velocity of light. It is inconceivable that such should

be the case.

(ii.) The diurnal rotations all take place about the pole,

and are all performed in the same period—a sidereal day.

This' uniformity is a natural consequence of the Earth's rota-

tion, but if the Earth were at rest, it could only be explained

by supposing the stars to be rigidly connected in some manner
or other. Were such a connection to exist it would be difficult

to explain the proper motions of certain fixed stars, and the

independent motions of the Sun, Moon, and planets.

(iii.) By observing the motion of the spots on the Sun at

different intervals, it is found that the Sun rotates on its axis.

Moreover, similar rotations may be observed in the planets
;

thus. Mars is known to rotate in a period of nearly 24

hours. There is, therefore, nothing unreasonable in suppos-

ing that the Earth also rotates once in a sidereal day.

(iv.) The phenomenon of diurnal aberration affords a proof

of the Earth's rotation. Were it not for the difficulty of its

observation, this proof alone would be conclusive.

We may mention that diurnal parallax could be equally well

accounted for if the celestial bodies revolved round the Earth j not
so, however, diurnal aberration.
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385. Dynamical Proofs of the Earth's Rotation.—
The following is a list of the methods by which the Earth'

9

rotation is proyed from dynamical considerations :

—

(1) The eastward deviation of falling bodies.

(2) Toucault's pendulum experiment.

(3) Toucault's experiments with a gyroscope.

(4) Experiments on the deviation of projectiles.

(5) Observations of ocean currents and trade winds.

(6) Experiments on the differences in the acceleration of

gravity in different latitudes, due to the Earth's centrifugal

force, as observed by counting the oscillations of a pendulum
}

combined with

(7) Observations of the figure of the Earth.

386. The Eastward Deviation of Falling Bodies.—«

If the Earth is rotating about its polar axis, those points

which are furthest from the Earth's axis move with greater

velocity than those which ai'e nearer the axis. Hence the

top of a high tower moves with slightly greater velocity than

the base. If, then, a stone be dropped from the top of the

tower, its eastward horizontal velocity, due to the Earth'3

rotation, is greater than that of the Earth below, and it falls

to the east of the vertical through its point of projection.

The same is true when a body is dropped down a mine. This

eastward deviation, though small, has been observed, and
affords a proof of the Earth's rotation.

Consider, for example, a tower of height h at the equator. If a be
the Earth's equatorial radius, the base travels over a distance 2iTa in

a sidereal day, owing to the Earth's rotation, while the top of the
tower describes 2ir{a + h) per sidereal day. Thus, the velocity at

the top exceeds that at the bottom by 2nJi per sidereal day.

If hhe measured in feet, the difference of velocities is TrhjdGOO inche$

per sidereal second, and is sufficiently great to cause a small but
perceptible deviation when a body is let fall from a high tower.

The earliest experiments were too rough to show this deviation,

and were, therefore, used as evidence against, instead of for, the
Earth's rotation. The deviation can only be observed in experi-

ments conducted with veiy great care, and it is very difficult to

measure. Its amount is largely modified by the resistance of the

air and other causes, and therefore differs considerably from tha^

by theory.
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387. Foucault's Pendulum Experiment.—In 1851,M.
roucault invented an experiment by which the Earth's rota--

tion is very clearly shown. A pendulum is formed of a large

metal ball suspended by a fine wire from the roof of a high
building, and is set in motion by being drawn on one side and
suddenly released ; it then oscillates to and fro in a vertical

plane. If now the pendulum be sufficiently long and heavy
to continue vibrating for a considerable length of time, the

plane of oscillation is observed to very gradually change its

direction relative to the surrounding objects, by turning

slowly round from left to right at a place in the northern

hemisphere, or in the reverse direction in the southern. If

the experiment is performed in latitude Z, the plane of

oscillation appears to rotate through lo° x sin Z in a sidereal

liour, 360° sin /in a sidereal day, or 360° in cosec I sidereal

days. This apparent rotation is accounted for by the Earth's

rotation, as follows.

(i.) Let us first imagine the experiment to be performed at

the north pole of the Earth. Let the pendulum AB be
vibrating about A in the arc BB' in

the plane of the paper. The only forces

acting on the bob are the tension of

the string BA and the weight of the

bob acting vertically downwards ; both

are in the plane of the paper. The
Earth's rotation about its axis CA pro-

duces no forces on the bob. Hence
there is nothing whatever to alter the

direction of the plane of oscillation
;

this plane therefore remains fixed in

spaf-e. But the Earth is not fixed in

space ; it turns from w(,'st to east, making
a complete direct revolution in a sidereal

day. Hence the plane of the pendulum's oscillation appears,

to an observer not conscious of his own motion, as though it

rotated once in a sidereal day, in the reverse or retrograde

.<]irection (east to west). If, however, he were to compare

the plane of oscillation not Avith the Eaith but with the

stars, whose directions are actually fixed in space, he would

Fig. 129.
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see that it always retained the same position rehitively to

them.

Since, then, the pendulum at the pole of the Earth appears to
follow the stars, it evidently appears to rotate in the same
direction as the hands of a watch at the north pole, and in

the direction opposite to the hands of a watch at the south
pole.

(ii.) JS'ext suppose the experiment performed at the Eurth'*

equator. If the bob be set swinging in

the plane of the equator, take this as the

plane of the paper (Fig. 130). The
direction of the vertical A QC is now
rotating about an axis through C per-

pendicular to the plane of the paper
;

hence it always remains in that plane.

Hence there is nothing whatever to

turn the plane of oscillation of the pen-

dulum out of the plane of the Earth's

equator. It therefore continues always
to pass through the east and west points,

and there is no apparent rotation of the

plane of oscillation.
Fig. 130.

If the pendulum do not swing in the plane of the equator,

the explanation is much more complicated. As the Earth

rotates, the direction of gravity performs a direct revolution,

in a sidereal day. Hence, relative to the point of support^

gravity is gradually and continuously turning the bob west-

wards, in such a way as to keep its mean position always
pointed towards the centre of the Earth. When the bob is

south of its position of equilibiium, this westward bias tends

to turn the plane of oscillation in the clockwise direction^,

but when the bob is north of the mean position, the west-

ward bias has an equal tendency to turn the plane in the
reverse direction. Consequently the two effects counter-

act one another, and therefore produce no apparent
rotation of the plane of oscillation relative to surrounding
objects.

I
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Fig 131.

(iii.) Lastly, consider the ease of an observer in latitude
I (Fig. 131). Let w denote the

angular velocity with which the

Earth is rotating about its polar axis

CF. It is a well-known theorem
in Rigid Dynamics that an angular

velocity of rotation about any lino

maybe resolvedinto components about

any two other lines, by the parallelo-

gram law, in just the same way as a

linear velocity or a force along that

line ; this theorem is called the

Parallelogram of Angular Velocities.

Applying it to the angular velocity

n about 6'P, we may resolve it into

two components

—

nc,o?,PCO or w sin? about CO,
and

n sin PCO orn cos I about a line CO' perpendicular to CO,

and we may consider the effects of the two angular velocities

separately.

As in case (i.), the component nsinl causes the Earth to

turn about CO, without altering the direction in space of the

plane of oscillation ; this plane, therefore, appears to rotate

relatively in the reverse or retrograde direction, with
angular velocity n sin I, As in case (ii.), the angular velocity

n cos I about CO' produces no apparent rotation of the plane

of oscillation relative to the Earth. Hence the plane of oscilla-

tion appears to revolve, relative to the Earth, with retrograde

angular velocity n sin L

But the angular velocity n = 15° per sidereal hour
= 360° per sidereal day.

Therefore the plane of oscillation turns through

15^ sin I per sidereal hour = 360° sin I per sidereal day,

360°
and its period of rotation = —:

—

^nsmi

= cosec I sidereal days.
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388. The Gyroscope or Gyrostat is another apparatus

used by Foucault to prove the Earth's rotation. It is simply

a large spinning-top, or, more correctly, a heavy revolving

wheel Jf (Fig. 132), whose axis of rotation AB is supported

by a framework, so that it can turn about its centre of gravity

in any manner. Thus, by turning the wheel and the inner

frame A CBB about the bearings CD, and then turning the

outer frame BECF about the bearings EF, the axis AB (like

the telescope in an altazimuth or equatorial) can be pointed

in any desired direction. The three axes A B, CD, EF all

pass through the centre of gravity of the top ;
hence its weight

is entirely supported, and does not tend to turn it in any

way ; and the bearings A, B, C, D, E, Fare very light,_and

so constructed that their friction may be as small as possible.

The top may be spun by a string in the usual way, and it

continues to spin for a long time.

Fig. 132.

When a symmetrical body, such as the wheel 3f, is revolv-

ing rapidly about its axis of figure, and is not acted on by
any force or couple, it is evident that no change of motion

can take place, and therefore the axis of rotati(m AB must
remain fixed in direction. This is tlie case with the gyro-

scope, for, from the mode in which the weight of the wheel
is supported, there is no force tending to turn it round.

When the experiment is performed it is observed that the

axis AB follows the stars in their diurnal motion; if pointed

to any star, it always continues to point to that star, its posi-

tion relative to the Earth changing with that of the star.

Hence it is inferred that the directions of the stars are fixed

in space, and that the diurnal motion is not due to them, but
to the rotation of the Earth.
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389. Ifwhile the gyroscope is spinning rapidly any attempt be made
to alter the direction of the axis of rotation AB by pushing it in any
direction, a very gre.'it resistance will be experienced, and the axis

will only move with great difficulty. This shows that the small
friction at the pivots CD, EFcan have but little effect in turning
the axis of the top, and therefore the gyroscope spins as if it wei*e

practically free, as long as its angular velocity remains considerable.

The following additional experiments with the gyroscope can be
ilso used to prove the Earth's rotation.

Experiment 1.— Let the hoop CEDF be steadily rotated about the
line EP. The line AB is no longer free to take up any position, for

the pivots C and D obviously force it always to be in a plane through
EjF and perpendicular to plane CEDF. Hence the axis of rotation

is no longer able to maintain always the same position, unless tlat

position coincides with EF. The result

is that the axis gradually turns about
CD till it does coincide with EF, the di-

rection of rotation of the wheel being
the same as that in which fi-ame is forced

to revolve. It will then have no further

tendency to change its place. Of course

we suppose the hoop turned so quickly

that the effect of the slow motion of the

Earth is imperceptible.

Experiment 2.—We may now repeat
Experiment 1, using the Earth's rota-

tion. Let the framework CEDF be fixed

in a horizontal position, the line CD
being held pointed due east and west. The axis AB is then

free to turn in the plane of the meridian. Now, owing to the

Earth's rotation, the framework carrying CD is turning about the

Earth's polar axis, and this causes the top to turn till its axis points

to the celestial poles. The result of experiment agrees with
theory, thus affording a further proof of the Earth's rotation about

the poles.

Experiment 3.—Let the framework CEDF he clamped in a vertical

plane. The axis AB can then turn in a horizontal plane, but it cannot

point to the pole. It will, however, try to point in a direction

differing as little as possible from the direction of the Earth's axis,

and will therefore turn till it points due north and south. This has

also been verified by actual observation.

Experiments 3 and 2, if performed with a sufficiently perfect

gyroscope, would enable us to find the north point, and then to find

the celestial pole, and thus determine the latitude vrithout observing

any stars. By means of Foucault's pendulum experiment we could

also (theoretically) determine the latitude.
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390. The Deviation of Projectiles.—If we suppose a

caiinon ball to be fired in any direction, say from the Earth's

Korth Pole, the ball will travel with nnifoim horizontal velocity

in a vertical plane. But, as the Earth rotates from right to left,

the object at which the ball was aimed will be carried round

to the left of the plane of projection, and therefore the ball

will appear to deviate to the right of its mark. At the South

Pole the reverse would be the case, because in consequence

of the direction of the vertical being reversed, the Earth would

revolve from left to right ; hence the ball would deviate to

the left of its mark. At the equator no such effect would

occur.

The deviation, like that in Foucault's pendulum, depends on

the Earth's component angular velocity about a v(>rtical axis

at the place of observation, and this component, in latitude ?,

is n sin /(§ 387, iii.). Now the Earth rotates about the poles

through 15" per sidereal second. Hence, if t be the time of

fliglit measured in sidereal seconds, the deviation is

=. nt ^\Ts.l •= 1 5". t sin /,

and it is necessary to aim at an angle 15". t sin / to the left of

the target in N. lat. /, or 15". t sin / to the ri(jht in S. lat. /.

The formula is sufficiently approximate even if t be measured

in Bolar seconds. It is necessary to allow for this deviation

in gunnery—thus affording another proof of the Earth's

rotation.

391. The Trade Winds are due to a similar cause. The
currents of air travelling towards the hotter parts of the

Earth at the equator, like the projectiles, undergo a deviation

towards the right in the northern hemisphere, and towards the

left in the southern. This deviation changes their directions

from north and south to north-east and south-east respectively.

In a similar manner the Earth's rotation causes a deviation

in the ocean currents, making them revolve in a direction

0])posite to that of the Earth's rotation, which is " counter
clockwise " in the N. and " clockwise " in the S. hemisphere.
The rotatory motion of the wind in cyclones is also due to

the Earth's rotation.
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392. Centrifagal Force.—If a body of mass m is revolving

in a circle of radius r with uniform velocity v under the action

of any forces, it is known that the body has an acceleration v^jr

towards the centre of the circle.* Hence the forces must
liave a resultant mv^jr acting towards the centre, and they

would be balanced by a force mv-jr acting in the reverse

direction, i.e., outwards from the centre. This force is called

the centrifugal force.

Thus, in consequence of its acceleration, the body appears to

€xert a centrifugal force outwards. If it be attached to the

centre of the circle by a string, the pull in the string is mv-jr.

If m be measured in pounds, r in feet, and v in feet per

second, then mv^jr represents the centrifugal force in poundals.

Similarly, in the centimetre-gramme-second system of units,

mv-jr is the centrifugal force in dynes.

If n represent the body's angular velocity in radians per

isecond, v = wr, and the centrifugal force is therefore mwV.

393. General Effects of the Earth's Centrifagal
Porce.—If the Earth were at rest the weight of a body
would be entirely due to the Earth's attraction. But in con-

sequence of the diurnal rotation the apparent weight is the

resultant of the Earth's attraction and the centrifugal force.

Let QOR represent a meridian section of the Earth

(Fig. 134). Consider a body of mass m supported at any
point on the Earth's surface. Since the Earth is nearly,

but not quite, spherical, the force g^ of the Earth's attraction

on a unit mass is not directed exactly to the Earth's centre,

but along a line OK. But, owing to the body's central

acceleration along OM, the force which it exerts on the

support is not quite equal to the Earth's attraction mg^^

but is compounded of mg^ acting along OK^ and the centri-

fugal force m .r^ . MO acting along MO.

On KQ, take a point G such that

KG : KO = w^ . MO : g ;

* See any book on Dynamics.
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then, by the triangle of force?, OG is tlie direction of the re-

sultant force exerted by the body on its support, and this

force is the apparent weight of the body. Hence, also OG
represents the apparent direction of gravity, or the verti-

cal as indicated by a plumb-line. Producing G 0, KO to Z,

Z'\ we see that tJie effect of centrifugal force is to displace the

verticalfrom Z" towards the nearest pole (P).

The angle ZGQ measures the (geographical) latitude of

the place, and is greater than Z"JiQ, which would measure

the latitude if the Earth were at rest. Hence the apparent

latitude of ant/ place is increased hy centrifugal force.

Fig. 134.

Again, if the apparent weight be denoted by mg, we have,

by the triangle of forces,

g;g,= GO:KO;
now from the figure it is evident that GO<KO, and there-

fore g < ^Q. Hence the apparent weight of a hody is diminished

hy centrifugal force.

394. Effect on the Acceleration of a Falling Body.
—If a body is falling freely towards the Earth near 0, the

whole acceleration of its motion in space is due to the Earth's

attraction, and is ^^^ along OK. But the Earth at has

itself an acceleration w'-O J/" towards M. Hence the accelera-

tion of the body relative to the Earth is the resultant of g^
along 0(7, and w^ . J/O along 310, and is therefore g along

G. Hence the body approaches the Earth with acceleration

g along OG. Therefore its relative acceleration is the accele-

ration due to its apparent weight, that is, to the resultant of
the Earth'' s attraction and centrifugal force.
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89 .5. To find the loss of weight of a body at the
equator, due to centrifugal force.— At the equator

centrifugal force is directly opposed to gravity; hence, if a

denote the Earth's radius CQ,

i^ow we have roughly

g^ = 32*18 feet per second per second,

a = 3963 miles = 3963 x 5280 feet,

and w = 27r radians per sidereal day

= j'adians per mean solar second.
86164 ^

-M- 3963 X 5280 X 47r- mo*.Hence n-a= . = •11127,
86164x86164

'

,., J. n\ -11127 1 Tand therefore — = = nearly.
g^ 32-18 289 ^

Hence gr = r/^-_|_ </„,

or the effect of the Earth'' s rotation is to decrease the weight of a

body by about of the whole.
289

For rough calculations it would be sufBcient to take g — 322,
a = 3960 miles, and to neglect the difference between a solar and a
sidereal day. This would give -s-^^o, as before.

396. To find approximately the loss of weight of a
"body and the deviation of the vertical due to centri-
fiigal force in any given latitude.—

Let ? = QG^O = astronomical latitude of 0] I)=GOK
= ZOZ" = deviation of vertical from direction of Earth's

attraction, or increase of latitude due to centrifugal force.

We have 0J/= CO cos COM
= a cos I approximately

;

w'liere ^ is the Earth's radius, since the Earth is very nearly

spherical, and z COM is therefore very nearly equal to the

latitude I. Therefore centrifugal force per unit mass at

= n^ . OM =n- .a cos I ^-^^-^g^ cos I (from § 395).
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Eesolving along OG, we have, if g^ be the Earth's attraction

per unit mass at 0-'',

g = g^ cos B—n^. OJIcos I

= Oo—^r^ cos'- 1 approximately

(since D is small, and .-. cos 2> = 1 nearly).

Hence, in latitude I, the Earth'' s rotation diminishes the weight

of a hody hy approximately -—- cos^ I of itself
289

Resolving perpendicular to G,

we have

g^^ sin D - w^OM sin / = ;

. ^ n^a cos I sin I
.-. sin I> =

- _3^ sin 2?
~ 289 2

Since d is small, this gives

approximately

, „ J
1 sin 2/

circular measure ot a = -^ ""b"'

'

.*. J)" (number of seconds in J))

Fig. 135.

180x60x 60
sm2l

289x27r

206265 .

21 = 357
578

2Z.

Hence the deviation J) = 5' 57". sin 21, and this is the in-

crease of latitude due to centrifugal force.

CoROLLA.B,Y.—The deviation of the vertical due to centri-

fugal force is greatest in latitude 45° (•.• sin 2^ = 1), and is

there 5' 57".

* Since the Earth is not quite spherical, g^ is not the same atO as
at the equator. The difference Tnay be neglected, however, when
multiplied by the small constant -5^^.
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397. Figure of the Earth.—In § 114 we stated that the
form of the Earth has been ohserved to be an oblate spheroid.

Now it has been proved mathematically that a mass of

gravitating liquid when rotating takes the form of an oblate

spheroid whose least diameter is along its axis of rotation.

Thus the Earth's form may be accounted for on the theory that

the Earth's surface was formerly in a fluid or molten state,

and that it then assumed its present form, owing to its diurnal

rotation. We thus have another argument in favour of the
Earth's rotation ; but it is only fair to say that this theory

of the Earth's origin has not been satisfactorily demonstrated.

It accounts satisfactorily, however, for the form of the

surface of the ocean.

This theory may be illustrated by the following general considera-

tions. When a mass of liquid is acted on by no forces beyond the
attractions of its particles, it is easy to realize that the whole is in

equilibrium in a spherical form, being then perfectly symmetrical.
If, however, the fluid be rotating about the axis FCP', the centri-

fugal force tends to pull the liquid away from this axis and towards
the equatorial plane. The liquid would, therefore, fly right off, but
its attraction is always trying to pull it back to the spherical form.

Hence, the only effect of centrifugal force (which, for the Earth, is

small compared with gravity) is to distort the liquid from its spheri-

cal form by pulling it out towards the equator ; and it is therefore

reasonable to suppose that the fluid will assume a more or less oblate

figure, whose equatorial is greater than its polar diameter.

It may also be remarked that the form assumed by the liquid

would be such that the effective force of gravity (i.e., the resultant

of the attraction and centrifugal force) on the surface would every-

where be perpendicular (i.e., normal) to the surface.

*398. Gravitational Observations.—If the Earth were a sphere,

its attraction g^ would everywhere tend to its centre, and would be
of the same intensity at all points on its surface, while the variations

in g, the apparent intensity of gravity, would be entirely due to the

Earth's centrifugal force, its value in latitude I being proportional

to 1 — 2^e"Cos'i (§ 396). By comparing the values of g at different

places, we should then be able to demonstrate the Earth's centri-

fugal force, and hence prove its rotation. But, owing to the Earth's
ellipticity, its attraction .go does not pass through the centre, except
at the poles and equator, and its intensity is not everywhere co n-

stant. It is, therefore, important to determine experimentally the

values of g at different stations. By allowing for centrifugal force, the

corresponding values of the Earth's attraction go can be found, and
the variations in its intensity at different places afford a measure of
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the amount by which the Earth differs from a sphere. We thus

have a ^gravitational method of finding the Earth's ellipticity.

But the Earth's ellipticity can also be determined by direct obser-

vation, as explained in Chapter III., Section III. The agreement
between the results thus independently obtained furnishes another

proof of the Earth's rotation.

In consequence of the Earth's'ellipticity it is found (by observa-

tion) that the difference in the intensity of gravity between the pole

and equator is increased from -^^^ to ^9^ of the whole.

399. To compare the Intensity of Gravity at different places.—
The intensity of gravity may be measured by the force with which
a body of unit mass is drawn towards the Earth. This cannot be
measured by weighing a body with a common balance, because the

weights of the body and of the counterpoise, by means of which it is

weighed, are equally affected by variations in the intensity of gi'avity,

and two bodies of equal mass will, therefore, balance one another
when placed in the scale pans, no matter what be the intensity of

gravity. In fact, by weighing a body with weights in the ordinary
way, we determine only its mass, and not the absolute force with
which it is drawn to the Earth.

"We might determine the intensity of gravity by means of a
" spring balance," for the elasticity of the spring does not depend on
the intensity of gravity, and therefore the extension of the spring
gives an absolute measure of the force with which the body is drawii

towards the Earth. If the apparatus were to support a mass of one
pound, first at the equator and then at the pole, the force on it

would be greater at the latter place by about yi^, and this spring

would there be extended about y ^„ more. It would be very difficult

to construct a spring balance sufficiently sensitive to show such a

small relative difference of weight, but it has been done.
Ahoood's macliine might be used to fi^nd g, but this method is not

capable of giving very accurate results.

The most accurate method of finding g is by timing the oscillations

of a pendulum of known length.

[* A theoretical simple pendulum, consisting of a mere heavy par-

ticle of no dimensions, suspended by a thread without weight, is of

course impossible to realize in practice, but the difficulty is over-

come by the use of a pendulum called Captain Rater's Reversible

Pendulum. This pendulum is a bar which can be made to swing
ab lut either of two knife-blades fixed at opposite sides of, but un-
equal distances from, its centre of gravity, and it is so loaded that
the periods of oscillation, when suspended from either knife-edge,
are equal. It is then known that the pendulum will swing about
either knife-edge in just the same manner as if it were a simple
pendulum whose whole mass was concentrated at the other knife-

edge. The distance between the knife-edges is, therefore, to be
regarded as the length of the pendulum.^
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400. Oscillations of a Simple Pendulum.—In a simple

penfluhim, formed of a small heavy particle suspended by a

fine light thread of length I, the period of a complete oscillation

to and fro is

-x/r
the time of a single swing or " heat " being of course half of

this.

Hence by observing the time of oscillation t and measuring
the length ?, the intensity of gravity

(f
can be found.

By the " seconds pendulum " is meant a pendulum in

which one leat occupies one second, hence a complete

oscillation occupies two seconds.

ExAMPLK.—Having given that the length of the seconds pendulum
is 99"39 centimetres, to find (j in centimetres per second per second.

t = 2iT-yilg = 2 seconds, and I = 99"39 cm.,

.-. g = TT-i = 99-39 X (3-1416)- = 981.

It is often necessary to compare the lengths of two
pendulums whose periods of oscillation are very nearly equal,

to find the effect of small changes in the length of a pendulum
due to variations in temperature, or, in comparing the intensity

of gravity at different places, to find th(; effect of a small

alteration in the value of
ff
on the period of oscillation and on

the number of oscillations in a given interval. If the differ-

ences are small, the calculations may be much simplified by
means of the following methods of approximation.*

401. To find the change in the time of oscillation of

a pendulum, and in the number of oscillations in a
given interval, due to a small variation in its length
or in the intensity of gravity.

If t be the time of a complete oscillation of a pendulum of

length I, we have, by § 400,

^•- = 47r-^- (i).

* Tho same results can of course be obtained by means of the

differential calculus.
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(i.) Suppose the length increased to l\ and let ^'be the new"
period of oscillation. We have

P = 47r- -.
9

Therefore, by division,

and therefore also

-^-=(^-0-^,——

•

These formulae are exact. But if V is very nearly equal to Z,

t' is very nearly equal to ^, and therefore, putting t-^t'^^ 2t,

we have approximately

^-t T'

whence, if t, I be known, the change t'— t, consequent on the

increase of length I'—l, may be readily found approximately
without the labour of extracting any square roots.

(ii.) Suppose the intensity of gravity increased to /, the

length I being unaltered, and let t' be the new period. Since

we have, by division,

£! = ^
p g

and therefore also

But, a t,
ff

are very nearly equal to t', g\ this gives

approximately
t'^t _ g'-^g
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(iii.) If I and g both vary, becoming V and g\ we have, in

like manner

£!_iV
P - tg

Therefore also

f ^ ^ f Ig' y ^ Ig'

_ V g-g' V-l
I g I

or approximately, if the variations are small,

1f-t_l'—l g'—g

t r""^'
showing that the effects of the two variations may be con-

sidered separately.

(iv.) If n, n' be the number of complete oscillations of the

pendulum in a given interval T, and if, in consequence of the

change, this number be altered to n\ we have

nt = nf= T,

n __ t

n t'

, n—n t—f
whence = —7-.

n t

If t' is very nearly equal to ^, this gives approximately

n—n _^ t'—t 1 1'— I ^1 g'—g

which determines the number of beats gained by the pendulum
* in the time T, in consequence of the variations, the original

number n being supposed known.

Example.—To find tte number of oscillations gained or lost in an
hour by tte pendulum, of tte Example of § 400, supposing (i.) its

length increased to 1 metre; (ii.) the acceleration of gravity in-

creased to 982 ; (iii.) both changes made simultaneously.

(i.) The pendulum beats seconds ; therefore it performs 3600 half

opcillations or 1800 whole oscillations in an hour. Also V= 100"00

. j'_Z = 0-61, /-jr = 0,
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Hence, if -n! be the new number of oscillations in an hour,

^^-1800 ^ _ 0:61 ^ _ 0:61
^ ^^^) = _ ojei

1800 n 2V ^ ^^ ^ 200

'

.-. w'-lS00 = -9x-61 =-5-49.

Hence the pendulum loses nearly 5^ oscillations in an hour, and the

number of oscillations is therefore 1794 J-

.

aDHere
^^ - 1800 ^ jlug ^ 982 - 981 ^ 1

(u.) neve
^g^ ^ 2x981 2x981*

.-. «'- 1800 =
llll

= -9 = 1 nearly.

Hence the pendulum gains 1 oscillation in an hour, the total

number of oscillations being 1801,

(iii.) Since from the first cause the pendulum loses 5^ oscillations

and from the second it gains 1 oscillation, therefore on the whole it

loses 5^—1 or 4|^ oscillations per hour. It therefore performs 17952
oscillations or 3591 heats per hour.

402. To compare the times of oscillations of two
pendulums whose periods are very nearly equal.—
If two pendulums of nearly equal periods are simultaneously

started swinging in the same direction, the one whose period

is a little the shortest will soon begin to swing before the

other. After some time it will gain a haK oscillation, and
the pendulums will then be swinging in opposite directions.

After another equal interval, the quicker pendulum will have
gained one whole oscillation on the slower, and both will

be again swinging together in the same direction. Similarly,

every time the quicker pendulum has gained an exact number
of complete oscillations on the slower, both will be swinging
together in the same direction. Thus, the number of coinci-

dences, or the number of times that the two pendulums are

together, in any interval, is equal to the number of complete
oscillations (to and fro) gained by the quicker pendulum over

the slower, i.e., the difference between the numbers of com-
plete oscillations performed by the two pendulums.

Thus, if n, n' be the number of oscillations of the slower
and faster pendulums in any given interval, then n'— nia the

the number of oscillations gained by the latter, and is, there-

fore, the number of ** coincidences." If either of the num-
bers n, n' is known, we can, by counting the coiacidences,

find the other number.
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403. To find gr, the acceleration of gravity, the

simplest plan is to use a Captain Kater's pendulum, the beat

of which is very nearly one second. By counting the

"coincidences" of the pendulum with the pendulum of a

clock regulated to heat seconds during, say, an hour (as

shown hy the clock) the exact time of oscillation can be
found. Moreover, from the number of beats gained or lost,

and the observed length of the pendulum, we may calculate

the amount by which the length must be increased or decreased

in order to make the pendulum beat seconds. The length of

the seconds pendulum is thus known, and the value of g can

be found.

The reason for using two pendulums is that it would be extremely
difficult to measure the length of the pendulum of the clock, and it

would be equally difficult to find the period of oscillation of a pen-
dulum without comparing it with that of a clock, whose rate can be
regulated daily by astronomical observations.

404. To compare the value of g at two different
stations, the simplest plan is to determine the number of

seconds gained or lost in a day by a clock after it has been
taken from one station to the other, the length of the pen-

dulum remaining the same. If n, n' be the number of

seconds marked by the clock in a day at the two places, we

have exactly
»!=£'
«= /

or approximately,
n g

whence the ratio of g' to g may be found.

Here there is no necessity to use a Captain Kater's pendulum,
because the length of the pendulum is not required; hence the
ordinary compensating pendulum of the clock answers the purpose.
If a non-compensating pendulum were used, it would be necessary
to make allowance for any change in the length of the pendulum
due to variations in temperature.
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EXAMPLES.—XII.

I

1. A Foucault's pendulum being set vibrating in latitude Z(f, show
,

that after one sidereal day it is again vibrating in the same plane.

Find the corresponding interval in latitude 45°.

2. If two conical pendulums of equal length revolve in opposite

directions, describing cones of equal vertical angle, show that at a

place in the northern hemisphere the pendulum which revolves in

the same direction as the hands of a watch will have the greater

apparent angular velocity, and will gain two complete revolutions

on the other in the period in which the plane of Foucault's pendulum
turns through 360°. Consider, in the first place, the phenomena at

the North Pole. Also describe the corresponding phenomena in the

southern hemisphere.
3. If a railway is laid along a meridian, and a train is travelling'

from the equator towards the pole, investigate whether it will exert

an eastward or a westward thrust on the rails, and why.
4. A bullet is fired in N. latitude 45°, with a velocity of 1,600 feet

per second, at an elevation 45°. Prove that it must be aimed in a
vertical plane 12' 30" to the left of the target ; and, if this precaution

be neglected, calculate how many feet it will deviate to the right.

5. Show that if the Earth were to rotate seventeen times as fast,

a body at the equator would have no weight.

6. If the Earth were a homogeneous sphere rotating so fast that

bodies at the equator had no weight, show that in any latitude the

plumb-line woiild point to the celestial pole.

7. Would the latitude of Greenwich be increased or decreased by
an increase in the speed of the Earth's rotation ? If the latitude of

a place be 60°, find what would be its latitude if (i.) the Earth were
reduced to rest, (ii.) its angular velocity were doubled.

8. Prove that if the Earth were reduced to rest, a pendulum in

latitude45°would gain one oscillation in every 1156, but if the Earth's

angular velocity were doubled, it would lose three oscillations in 1156.

9. A clock and a chronometer are taken from London to Gibraltar

and it is observed that the clock begins to lose, while the chrono-

meter continues to keep correct time. Why is this ?

10. Assuming that a body loses -xia of its weight when taken
from the poles to the equator, show that a clock which keeps mean
time at the equator would keep sidereal time at the poles, with a
rate amounting to only a fraction of a second per day.

11. With the data of the last question, show that the Earth's

attractions on a unit mass placed at the equator and at the poles are

in the ratio of (nearly) 496 : 497.

12. If a railway train is travelling along the equator from east to

west, show that it presses on the rails with a force greater than its

apparent weight when at rest. If the train is travelling at forty-five

geographical miles per hour, and its mass is 144 tons, find (roughly)
in pounds the increase in the downward thrust on the rails.
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EXAMIITATIOT^ PAPER.—XII.

1. Give reasons for supposing that the diurnal rotation of the
heavens is only an appearance caused by a real rotation of the
Earth. Name methods by wbich it has been claimed that this is

proved.

2. Describe the gyroscope experiment, and the gyroscope.

3. Give any theoretical methods of determining latitude without
observing a heavenly body.

4. Describe Foucaulfc's experiment for exhibiting the Earth's

rotation ; and find the time of the complete rotation of the plane of

vibration of a simple pendulum fieely suspended in latitude 60°.

5. Having given that the Earth's circumference is 40,000 kilo-

metres, find the acceleration of a body at the equator due to the
Eai'th's rotation in centime tz'cs per second per second, and taking

qq, the acceleration of gravity, to be 981 of these units, deduce the
ratio of centrifugal force to gravity at the equator.

6. What is meant by the vertical at any point of the Earth's

surface ? Supposing the Earth to be a uniform sphere revolving

round a diameter, calculate the deflection of the vertical from the

normal to the surface.

7. State what ai-gument is drawn from the Earth's form to support
the bypothesis of its rotation.

8. Why is it that the intensity of gravity is less at the equator

than in higher latitudes ? Show that the alteration in the apparent
weight of a body due to centrifugal force varies nearly as cos" I,

where I is tbe latitude, and state the ratio of centrifugal force to

gravity at the equator.

9. If a body is weighed by a spring balance in London and at

Quito, a difference of weight is observed. Why is this not observed if

an ordinary pair of scales be used ?

10. Show that an increase in the intensity of gravity will cause

a pendulum to swing more rapidly, and vice versd. If the accelera-

tion of gravity be increased by the small fraction 1/r of its value,

show that a pendulum will gain one complete oscillation in every 2r.



CHAPTEE XIII

THE LAW OP tj:n^iversal grayitation.

Seciion I.

—

The EarWa Orhital Motion—Kepler's Laws and
their Consequences.

405. Evidence in favour of the Earth's Annual
Motion round the Sun.—The theory that the Earth is a

planet, and revolves round the Sun, was propounded by
Copernicus {circ. 1530) and received its most convincing
proof, over 150 years later from Newton (a.d. 1687), who
accounted for the motions of the Earth and planets as a

consequence of the law of universal gravitation. This proof

is based ondynamical principles ; but the following arguments,
based on other considerations, afford independent evidence in

favour of the theory that the Earth revolves round the Sun
rather than the Sun round the Earth.

(i.) The Sun's diameter is 110 times that of the Earth's,

and it is much easier to believe that the smaller body revolves

round the larger, than that the larger body revolves round
the smaller.

If tlie dynamical laws of motion be assumed, it is impossible to

see how the larger body could revolve round the smaller, unless
either its mass and therefore its density were very small indeed,

or the smaller one were rigidly fixed in some way.

(ii.) The stationary points, and alternately direct and retro-

grade motions of the planets, are easily accounted for on the
theory that the Earth and planets revolve round the Sun
(Chap. X.) in orbits very nearly circular, and it would be
impossible to give such a simple explanation of these motions

on any other theory. It is true that we might suppose, with
Tycho Brahe {circ. 1600), that the planets revolve round the

Sun as a centre, while that body has an orbital motion round
the Earth, but this explanation would be more complicated

than that which assumes the Sun to be at rest. And it would
be hard to explain how such huge bodies as Jupiter and
Saturn could be brought to describe such complex paths.
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(iii.) As seen througli a telescope, Venus and Mars are

found to be veiy similar to tlie Earth in their physical charac-

teristics, and their phases show that, like the Earth and

Moon, they are not self-luminous. It is, therefore, only

natural to suppose that their property of revolving round the

Sun is shared by the Earth. Moreover, the Earth's relative

distance from the Sun agrees fairly closely with that given

by Bode's law ; hence there is a strong analogy between the

Earth and the planets.

(iv.) The orbital motion of the Earth is in strict accordance

with Kepler's Laws of Planetary Motion. In particular, the

relation between the mean distances and periodic times given

by Kepler's Third Law (§ 326) is satisfied in the case of the

Earth's orbit.

Moreover, a similar relation is observed to hold between the

periodic times of Jupiter's satellites and their mean distances

from Jupiter. Hence it is probable that the Earth and
planets form, like Jupiter's satellites, one system revolving

about a common centre. But it is improbable that the Sun
and Moon should both revolve about the Earth, for their

distances from it and their periods are not connected by this

relation.

(v.) The changes in the relative positions of two stars

during the year in consequence of annual parallax can only

be accounted for on the hypothesis either of the Earth's

orbital motion, or of a highly improbable rigid connection

between all the nearer stars and the Sun, compelling them
all to execute an annual orbit of the same size and position.

(vi.) The aberration of light affords the most convincing

proof of all. In particular, the relation between the coefficient

of aberration and the retardation of the eclipses of Jupiter's

satellites has been fully verified by actual observations, and
affords incontestible evidence that the phenomenon is actually

due to the finite velocity of light, as explained in Chapter XI.
And the alternative hypothesis which would account for

annual parallax would not give rise to aberration, but would
produce an entirely different phenomenon. Hence the evi-

dence derived from the aberration of light, unlike the previous

evidence, furnishes a conclusive proof, and not merely an
argument, in favour of the Earth's orbital motion.
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406.—NEWTON'S THEORETICAL DEDUCTIONS
FROM KEPLER'S LAWS.

Kepler's Three Laws of planetary motion naturally suggest

tlie following questions :

—

(1) What makes the planets move in ellipses ?

(2) Why does the radius vector from the Sun to any planet

trace out equal areas in equal times ?

(3) Why are the squares of the periodic times proportional

to the cubes of the mean distances from the Sun ?

These questions were first answered by l^ewton about 1687,

or nearly sixty years after the death of Kepler. The theore-

tical interpretation of the Second Law necessarily precedes

that of the first ; accordingly we now repeat the laws in their

new order, together with Newton's interpretations of them.

Kepler's Second Law.—The radius vector joining
each planet to the Sun moves in a plane describing
equal areas in equal times,

Newton's deduction.— The force under which a
planet describes its orbit always acts along the
radius vector in the direction of the Sun's centre.

Kepler's First Law.—The planets move in ellipses,
having the Sun in one focus,

Newton's deduction.—The force on any planet
varies inversely as the square of its distance
from the Sun.

Kepler's Third Law.—TTie squares of the periodic
times of the several planets are proportional to the
cubes of their mean distancesfrom the Sun.

Newton's deduction.—The forces on different
planets vary directly as their masses, and inversely
as the squares of their distances from the Sun,
or, in other words, the accelerations of different
planets, due to the Sun's attraction, vary inversely
as the squares of their distances from the Sun.
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If, as we liare every reason for believing, tlie planets are

material bodies, IS'ewton's laws of motion show that tbey

cannot move as they do unless they are acted on by some

force, otherwise they would either be at rest or move uni-

formly in a straight line. Kepler's Second Law then enables

us to determine the direction of this force, his First Law
enables us to compare the force at different parts of the same

orbit, and his Third Law enables us to compare the forces on

different planets.

407. "We have seen that the orbits of most of the planets are

nearly circular, the eccentricities being small, ezcept in the

case of Mercury. Before proceeding to the general discussion

of the dynamical interpretation of Kepler's Laws, it will be

convenient therefore to consider the case where the orbits are

supposed circular, having the Sun for centre. Kepler's

Second Law shows that under such circumstances the planets

will describe their orbits uniformly, and it hence follows that

the acceleration of a planet has no component in the direction

of motion, but is directed exactly towards the centre of the

Sun. The law of force can now be deduced very simply, as

follows :

—

KEPLER'S THIRD LAW POR CIRCULAR
ORBITS.

408. To compare the Sun's attractions on different

Planets, assuming that the orbits are circular and
that the squares of the periodic times are propor-

tional to the cubes of the radii.

Suppose a planet of mass Jfis moving with velocity «? in a

circle of radius r. Let T be the periodic time, P the force to

the centre.

Since the normal acceleration in a circular orbit is v^jr^

therefore P = •

r

In the period T the planet describes the circumference lira
;

Substituting for «;, we have

p _ Air'^Mr _ M 47rV
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Let M' be the mass of another planet revolving in a cir-

cular orbit of radius r', T its periodic time, P' the force of

the Sun's attraction ; then we have in like manner

P'- i£ V ^"^

By Kepler's Third Law,

. p. P ^M .W
r- r *

Therefore the forces on different planets vary
directly as their masses and inversely as the squares
of their distances from the Sun.

CoEOLLAEY 1.—Let P = CMjr^ ; then C is called the abso-

lute intensity of the Sun's attraction, and we see that

The absolute intensity of the Sun's attraction is the
same for all planets.

T, ^ 47rV 47ry»

The constant C evidently represents the force with which
the Sun would attract a unit mass at unit distance, or the

acceleration which the Sun would produce at unit distance.

CoEOLLAEY 2.—If another body be revolving in an orbit of

radius / in a period T\ under a different central force, which
produces an acceleration C'/r"'^ at distance r\ we have

.-. C'T*^ : Cr = r'' : r»,

a formula which enables us to compare the absolute intensities

of two different centres of force, which attract inversely as

the squares of the distances, when the periodic times and
distances of two bodies revolving about them are known.
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409. To compare the velocities and angular velo-

cities of two planets moving in circular orbits.—If

V, v are the velocities, w, n the angular velocities (in radians

per unit time), we have

w = 27r/r, n'=2TTlT'',

.-. n'.n'= T-^: T'-' = r-t : /-f.

Also V = rn, v = r'n'
;

.*, V i v'= r~^ '. r'~K

Examples.

1. If the Earth's period were doubled, to find what would be its

new distance from the Sun.
If r, r' be the old and new distances, Kepler's Third Law gives

r'3 : rs = 22
: 12;

.'. / = r X y4 = 92,000,000 x 1-587

= 146,000,000 miles.

2. If the Earth's velocity were doubled, its orbit remaining cir-

cular, to find its new distance.

Here r^ I r = v^ : v'^ = 1 : 4;

,'. /= ir = 23,000,000 miles.

3. If the Earth's angular velocity were doubled, to find its new
distance.

The new angular velocity being double the old, the new period

would be half the old, and therefore

^'3.^= (1)2.12.

/. r' = r X 3/i = r/V4 = 92,000,000 -^ 1-587

= 92,000,000 X -63 = 58,000,000 miles.

4. To find what would be the coefficient of aberration to an
observer situated on Yenus.
The coefficient of aberration (in circular measure) is the ratio of

the observer's velocity to the velocity of light ; hence, if &, k' are the

coefficients on the Earth and Yenus,

k V r-i V r' V 72
'

.•. k' = 20-493" X a/(1-38) = 20-493" x 1'1785

= 24151".
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We shall now prove ISTewton's deductions from Kepler's

Laws, for the general case of elliptic orbits, employing, how-
ever, different and simpler proofs to those used by N^ewton.

410. Areal Velocity.— Definition.—If a point P is

moving in any path MFK about a centre >S, the rate of

increase of the area of the sector if/SP, bounded by the fixed

line SM and the radius vector 8P^ is called the areal

velocity of P about the point S.

If the radius vector 8P describes equal areas in equal

times, in accordance with Kepler's Second Law, the areal

velocity of P about & is of course constant, and is then

measured by the area of the sector described in a unit of time.

If the rate of description of areas is not constant, we
must, in measuiing the areal velocity at any point, pursue a

similar course to that adopted in measuring variable velocity

at any instant, as follows :

—

Pig. 136.

If the radius vector describes the sector PBF in the inter-

val of time ^, then the average areal velocity over the

arc PP' is measured by the ratio

area P8P'
tiuie t

(Thus the average areal velocity is the areal velocity with

which a radius vector, sweeping out equal areas in equal

times, would describe the sector P^P' in the same time t.)

The areal velocity at a point P is the limiting value of

the average areal velocity over the arc PP' when this arc

is infinitesimally small.
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411. Relation between tlie Areal Velocity and the
Actual (linear) Velocity.—Let PP' be the small arc

described by a body in any small interval of time t. Let v

be tbe actual or linear velocity of the body, Ti its areal velocity.

Since the arc PP' is supposed small, we have

TF-vt,
area P>SP'=A^.

Draw )SF perpendicular on the chord PP'produced. Then

AP/SP = \ (base) x (altitude)

= iPP'x>SF;

or h = \v.BY,

Fia. 137.

But when the arc PP' is infinitesimally small, PFis the
tangent at P, and /SFis therefore the perpendicular from B
on the tangent at P. If this perpendicular be denoted byjp,

we have therefore

'*= T^i> (i.),

or (areal vel. about ^)
= \ (velocity) x (perp. from 8 on tangent).

CoBOLLAEY.

—

For plaucts moving in circular orbits

of radii r, r , A = |i;r, and K— \or\

But V : v'— r-* : r'"*
;

hence the areal velocity of a planet moving in a circular orbit

is proportional to the square root of the radius.
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412. Propostttok I. If a particle moves in such a
manner that its areal velocity about a fixed point is

constant, to prove that the resultant force on the
particle is always directed towards the fixed point.

[Newton's Deduction from Kepler's Second Law.]

Let a body be moving in the curve PQ in such a way that

its areal velocity about S remains constant. Let v, v' be

the velocities at P, Q, and let FY, QY, the corresponding

directions of motion, intersect in J^. Drop ST, Sy perpen-

dicular on PF, QT.
Since the areal velocities at P and Q are equal,

.-. v.SY=v\ ST.
But ST=SIi sin SET,

ST= SE sin SET.
.-. V sin SET=v' sin SE T.

Fig. 138.

i.e., Component velocity at P perpendicular to SE
= component vel. at Q perp. to SE.

Therefore, as the particle moves from P to Q, its velocity

perpendicular to ES is unaltered, and therefore the total

change of velocity is parallel to ES.
This is true whether the arcPQ be large or small. But if

the arc FQ be taken infinitesimally small, the average rate

of change of velocity over FQ measures the acceleration at

P, and E coincides with P.
Therefore the direction of the acceleration of the particle

at any point of its path always passes through S, and there-

fore the force acting on the particle also always passes

through /S,
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413. CoU'Verselyjif the force on theparticle alwayspasses through S,

the areal velocity about 8 remains constant. For in passing from J'

to Q, the direction of motion is changed from PR to RQ, and the
same chai'ge of velocity could therefore be produced by a suitable

single blow or instantaneous impulse acting at R. And since the
force at every point of PQ always passes through 8, this equivalent
impulse must evidently also pass through 8 ; it must therefore act
along R8. Hence the velocity perpendicular to R8 is unaltered by
the whole impulse, and is the same at P as at Qj therefore

y

Fig. 139.

V sin 8RT = v' sin 8RY' ;

therefore v.8T=v\8r;
therefore areal vel. at P = areal vel. at Q,

414. Proposition II. A particle describes an ellipse

under a force directedtowards the focus ; to show that
the force varies inversely as the square of the dis-

tance.
[Newton's Deduction from Kepler's First Law.]
If h is the constant areal velocity, we have, by (i.),

V = 2h/p.

We will now express the kinetic energy of the particle in

terms of r, its distance from the focus. Let its mass be M.
In the Appendix (Ellipse 11) it is proved that for the

ellipse whose major and minor axes are 2a, 25,

J. ^J___± /2 1_\
pi — Sr b-" \r a)'

rj^ , 2 4^2 4^2^ / 2 1 \

Therefore t'' = —- = —
,

p^ P \ r a /

and kinetic energy at distance r

= iJf.^ = Jif^=Jf-^(---) (n.).
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If <o is the Telocity at distance r', we have, similarly,

and therefore, for the increase of kinetic energy,

\r r I

\Mv''-\Mv^ = ,(iii.).

1 V ; \

1 "" ^

'>\
\ \

C ^^ f

Fig. 140.

N'ow the increase of kinetic energy is equal to the work
done by the impressed force in bringing the particle from
distance r to distance /. The resolved part of the displace-

ment in the direction of the force is r— i-'. Hence if P'
denote the average value of the force between the distance*

r and r', we have

•Work done = P' (r-/) = ^Mv^^-^Mv' = i^(l _ 1\
6 \ r r J

__ 4Mh'^a r—r
"~

J2 ^^' (iv-);-

xy ^MWa
, ^

•• ^^Iw (^•)'

Put / = r ; then the average force P' becomes the actual
force P at distance r. Therefore

P(Force at distance r) = ^^^ (vi.).

This is proportional to 1/r^.

Therefore the force varies inversely as the square of the dis-

tance.

ASTRON. 2 A
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415. Peoposition III. Having given that the squares
of the periodic times of the planets are proportional
to the cubes of the semi-axes major of their orbits, to
compare the forces acting on different planets.
{Newton's Deduction from Kepler's Third Law.]

Let T be the periodic time of any planet; then, by-

hypothesis, the ratio
IJI2

is the same for all planets.

In the last proposition (vi.) we showed that the force at

distance r is given by

iv
•

Let this be put = MC/r^, where C is some constant ; then

*^=-^ (^i-)-

I^ow in the period T the radius vector sweeps out the area

of the ellipse, and this area is -Kah (Appendix, Ellipse 13).

Hence, since the areal velocity is A, we have
hT = -nab.

Substituting the value of li from this equation in (vii.), we
have

^ =-yi^-^ (^-0.

But «'/T^ is the same for all the planets ; therefore C is con-

stant for aU the planets, and since the force

^-^ (i^-),

it follows that

The forces on different planets are proportional to their

masses divided hy the squares of their distances from the Sun.

Or, as in § 408, Cor. 1,

The absolute intensity of the Sun's attraction ( C) is the same

for all the planets.

CoROLLAKT.—Let acceutcd letters refer to the orbit of

another particle revolving round a different centre of force of

intensity C. Then, by (viii.),

T'C: T'^C = a': a'\
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416. Other Consequences of Kepler's Laws.

(i.) In § 150 we showed that, in consequence of Kepler's
Second Law being satisfied by the Earth in its annual orbit,

the Sun's apparent motion in longitude is inversely propor-
tional to the square of the Earth's distance from it. Since
the areal velocity of any planet about the Sun always remains
constant, it may be shown in like manner that its angular
velocity is inversely proportional to the square of its distance
from tlie Sun.

Fig. 141.

Eor, if the planet's radius vector revolves from SF to SF
in the time t, and if the arc FF' is very small, we have

area SFF' = ^SF' x Z FSF' (§ 150),

the angle being measured in radians
;

area SFF' _ ^^-p^ A FSF'

i.e., (areal velocity of F) = ^SF^ x (angular velocity of P),
provided that the angular velocity is measured in radians per
unit of time.

If n denote the angular velocity, h the areal velocity, and r
the distance SF, we have therefore

And since h is constant, n is inversely proportional to r*.

* (ii.) If the mass of the planet is M, its momentum is Mv along
PT, and the moment of this momentum about 8 is

= Mv xST = Mvp = 2hM. (§ 411.)

This is the planet's angular momentum, and is constant, since h is

constant.
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*417. Having given, in magnitude and direction, the velocity of a
planet at any point of its orbit, to construct the ellipse described

under the Sun's attraction.

Let the attraction at distance r be C/r^ per unit mass, where G is

given. Suppose that at the point

P of the orbit the planet is moving
with velocity v in the direction

PT. We have

17 X ST = 2h, which determines h.

Also, from (vii.),

G = 4h"-alhK

Substituting in (ii.),

\ r a I

Hence,by considering the planet
at P, we have

"' = "(sVi) ••*-"'•

Now V, G, and 8P are known ; hence the last equation determines

the semi-axis major a. If r = 8P, we have

2C-rv2

Let H be the other focus of the ellipse. Then it is known
(Ellipse 8) that HP, SP make equal angles with PT. Also 8P + HP
= 2a. Hence, we can construct the position of H by making
Z TPI = Z TPS, and producing IP to a point H such that

PH = 2a-8P.

The ellipse can now be constructed as in Appendix (Ellipse 2).

Corollary 1.—Since 8P + HP = 2a, equation (x.) gives

a G.HP
8P.a

Corollary 2.—Substituting for h in terms of G, we see from

equation (iv.) that the work done when the body moves from dis-

tance r to distance r' is

MG{^^y
* This result is also proved independently in many treatises on

dynamics, but a fuller investigation would be out of place here.
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Hence the work done by a mass M in falling from distance 2a to

distance r is

= MCI--^] =lMv^ bv (xi.
V r 2a/ ^

= kinetic energy of the planet when at distance r.

Therefore, if a circle be described about the centre of force 8, with
radius equal to the major axis 2a, the velocity at any point of the
orbit is that which the planet would acquire by falling freely from
the circle to that point under the action of the attracting force.

Corollary 3.—If the planet be revolving in a circle, r = a, and
therefore v^ = Gjr = OJa, as in § 408.

Corollary 4.—If v* = 2C/r, (x.) gives 1/a = 0; .*. a = oo

.

Hence the velocity is that acquired by falling from an infinite

distance. In this case, the orbit is not an ellipse, but a parabola, a

conic section satisfying the " focus and directrix " definition of

Appendix (1), but having its eccentricity equal to unity.

If v^ >2C/r, the velocity is greater than that due to falling from
infinity, a comes out negative, and the orbit is a hyperbola, a conic
section satisfying tlie focus and directrix definition, but having its

eccentricity e greater than unity.

A few comets have been observed to describe parabolas and hyper-
bolas about the Sun. In such a case the motion is not periodic; the
comet gradually moves away to an infinite distance, and is lost for

ever, unless the attraction of some other heavenly body should
happen to divert its course, and send it back into the solar system.

Example.—To find how long the Earth would take to fall into

the Sun if its velocity were suddenly destroyed.
If the Earth's velocity were verxj nearly, but not quite destroyed,

it would describe a very narrow ellipse, very nearly coinciding with
the straight line joining the point of projection to the Sun. The
major axis of this ellipse would be very nearly equal to the Earth's
initial distance from the Sun, and therefore the Earth would have
very nearly gone half round the narrow ellipse when it would
collide with the surface of the Sun.

Hence, if r denote the Earth's distance from the Sun, the semi-
major axis of the narrow ellipse is \r, and the periodic time in this

ellipse would be (J)t years. The Earth would therefore collide

with the Sun in

2 ^ {\)^ years = —-j- years = —- years

= —- X 1'4I42 days = 64| days nearly.
8
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Section II.

—

Newton's Law of Oravitation— Comparison oj

the Masses of the Sun and Planets.

418. In the last section we showed that the Sun attracts any
planet of mass M at distance r with a force CMIr^y where C
is a constant. If we assume the truth of Newton's Third
Law of Motion («.^., that action and reaction are equal and
opposite), the planet must also attract the Sun with an equal
and opposite force CMlr"^. Since in the former case the
force is proportional to the mass of the attracted body, and in

the latter to the mass of the attracting body, it is reasonable
to suppose that the attraction between two bodies is propor-
tional to the mass of each.

Moreover, the motions of the various satellites, such as the
Moon, confirm the theory that they revolve in their orbits

under the attraction of their respective primary planets.

From evidence of this character Newton, after many years of

careful investigation, enunciated his Law of Universal
Gravitation, which he stated thus :

—

Every particle in the universe attracts every other
particle with a force proportional to the quantities
of matter in each, and inversely proportional to the
square of the distance "between them.
By quantity of matter is, of course, meant mass, and the

word attracts implies that the force between two particles

acts in the straight line joining- them and tends to bring them
together.

If if, M' be the masses of two particles, and r the distance

between them, the law asserts that either particle is acted on
by a force, directed towards the other, of magnitude

where k has the same value for all bodies in the universe.

The constant k is called the constant of gravitation.

*419. Astronomical Unit of Mass.—Taking any fundamental
units of length and time, it is possible to choose the unit of mass
such that fc = 1. This unit is called the astronomical imit of ma.ss.

Hence, if M, M' are expressed in astronomical units, the force

between the particles is equal to MM'/r^. It is, however, usually

more convenient to keep the unit of mass arbitrary, and to retain

the constant h.
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420. Remarks on the Law of Gravitation.—l^ewton's

Law states that not only do the Sun, the planets and their

satellites, and the stars, mutually attract one another, hut

every pound of matter on one celestial hody attracts every

other pound of matter, on either the same or another hody.

But it is well-known that two spheres attract one another

in just the same way as if the whole of the mass of either

were concentrated at its centre, provided that the spheres

are either homogeneous or made up of concentric spherical

layers, each of uniform density. Since the Sun and
planets are very nearly spherical, and their dimensions are

very small compared with their distances, we see that their

attractions may he very approximately found hy regarding

them as mere particles, instead of taking separate account of

the individual particles forming them.

Moreover, every planet is attracted hy every other planet^

as well as hy the Sun. But the mass of the Sun, and con-

sequently its attraction, is so much greater than that of any

other memher of the solar system, that the planetary motions

are only very slightly influenced hy the mutual attractions.

Kepler's Laws, therefore, still hold approximately, hut the

orhits are suhject to small and slow changes or perturhations.

The Moon, on the other hand, is far nearer to the Earth

than to the Sun ; hence the Moon's orhital motion is mainly

due to the Earth's attraction. The chief effect of the Sun's

attraction on the Earth and Moon is to cause them together

to describe the annual orbit ; but it also produces pertur-

bations or disturbances in the Moon's relative orbit (§ 272)

with which we are not here concerned.

The fixed stars also attract one another and attract the

solar system, which in its turn attracts the stars. The
proper motions of stars are probably due to this cause

;

but when we consider the vast distances of the stars, ami

remember that the attraction varies inversely as the square

of the distance, it is evident that the relative accelerations

are mostly too feeble to have produced any sensible changes of

motion within historic times, and that countless ages must
elapse before such changes can be discerned.
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421 . Correction of Kepler's Third Law.—Fromthefact
that a planet attracts the Sun with a force equal to that with
the Sun attracts the planets, it may he shown that Kepler's
"Third Law cannot be strietly true, as a consequence of the
law of gravitation. Not only will the planet move under
i;he Sun's attraction, but the Sun will also move under the

planet's attraction.' But since the forces on the two bodies

,are equal, while the mass of the Sun is very great compared
with the mass of any planet, it follows that the acceleration

of the Sun is very small compared with that of the planet,

and hence the Sun remains very nearly at rest.

We may, however, obtain a modification of Kepler's Third
Law, in which the planet's reciprocal attraction is allowed

^or as follows :

—

Let 8, Jfbe the masses of the Sun and planet; then the

.attraction betweeen them is

n SM

This attraction, acting on the mass M of the planet, produces

an acceleration of the planet towards the Sun equal to

The corresponding attraction on the mass S of the Sun pro-

duces an acceleration, in the reverse direction, of

^^-

Hence the whole acceleration of the planet relative to the

Sun 18 k—-—

,

r-

instead of kS/r'^, as it would be if the Sun were at rest.

Hence the absolute intensity of the planet's acceleration

towards the Sun is l {S-\-M}, and this depends on the values

of both M and S. Let now T be the periodic time, r the

planet's mean distance from the Sun, or the semi-axis major

of the relative orbit ; then, by § 408 (for a circular orbit), or

§ 415 (for an elliptical orbit),

y5;(5+J/)r = 4;rV.
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If M' be the mass of another planet, we have in like manner

for its orbit k{S+ JI')T" = 4n' r'\

Therefore T\S+ 3£) : T'' {S+M')=r^ \ r'»,

the correct relation between the periods and mean distances.

It is known that different planets have different masses.

Hence, the fact that Kepler's Third Law is approximately

true shows that the masses of the planets are small compared

with that of the Sun.

422. Motion relative to Centre of mass.—The
mutual attractions of the Sun and planet have no influence

on the position of the centre of mass (commonly called the
'' centre of gravity ") of the solar system ; hence, in consider-

ing the relative motions, that point may be treated as fixed.

It is known from general dynamical principles that when a

system of bodies are under the influence of their mutual
reactions or attractions alone, the centre of mass of the whole
system is not accelerated. But it may be interesting to prove

independently that when two bodies, such as the Sun and a

planet, attract one another, they both revolve about their

centre of mass.

Let us suppose (to take a simple case) the relative

orbit circular and of radius {SP =) r, the angular velocity

being n. Then, if G be the point about which the planet

(P) and Sun (S) revolve, individually, we have

n^xGP= accel. of planet = kS/t^
;

n^ xGS = accel. of Sun = JcM/r^.

Hence Mx GF = Sx GS
;

which relation shows that G is the common centre of mass,

as was to be proved.

In the case of three or more bodies, such as the Sun and
planets, the centre of mass is still the common centre about

which they revolve, but the corresponding investigation is

more difficult, owing to the effect of the mutual attractions

of the planets in producing perturbations.

It may be mentioned that the mass of the Sun is so large,

compared with those of the planets, that, although the further

planets are so very distant, the centre of mass of the whole
Bolar system always lies very near the Sun.
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423. Verification of the Theory of Gravitation for
the Earth and Moon.—Before considering the motions of

the planets about the Sun, Newton investigated the orbital

motion of the Moon about the Earth, with the view of dis-

covering whether the Earth's attractive force, which retains

the Moon in its orbit, is the same force as that which pro-

duces the phenomenon of gravity at the Earth's surface.

If we assume that the force varies inversely at the square

of the distance, and that the Moon's distance is 60 times the

Earth's radius, the acceleration of gravity at the Moon should

be (73^0)^ ^, where g is the acceleration of gravity on the

Earth's surface.

But the acceleration g = 32-2 feet per sec. per sec.
;

.'. accel. at Moon's distance = 32-2/3600 feet per sec. per sec.

= 32-2 feet per min. per min.

Erom the length of the lunar month and the Moon's dis-

tance in miles, Newton calculated what must be the normal
acceleration of the Moon in its orbit. At the time of his first

investigation (1666) the Earth's radius and the Moon's dis-

tance were but imperfectly known, and the Moon's normal
acceleration, as thus computed, came out only about 27 feet

per minute per minute. Some fifteen years later, the Earth's

radius, and consequently the Moon's distance, had been
measured with much greater accuracy, and, working with the

new values, Newton found that the Moon's normal accelera-

tion to the Earth agreed with that given by his theory.

Taking the lunar sidereal month as 27-3 days, the Earth's

radius as 3960 miles, and the radius of the Moon's orbit as

60 times the Earth's radius, the angular velocity (w) of the

Moon, in radians, per minute is

27r

27-3x24x60"
The Moon's distance in feet (d) = 3960 X 60 x 5280.

Hence the Moon's normal acceleration (n^d) in feet per

minute per minute

_ 3960 X 6 X 5280 x iir^ _ 2xllO^X7r'^

(27-3)2x242x602 (27-3)2x10

= 32 approximately,

thus agreeing with that given by the law of gravitation.
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Example.—Having given that a body at the Earth's equatoi' loses

1/289 of its weight in consequence of centrifugal force,

(i.) To calculate the period in which a projectile could revolve in

a circular orbit, close to, but without touching the Earth, and
(ii.) To deduce the Moon's distance.

(i.) The centrifugal force on the body would have to be equal to

its weight, and would therefore have to be 289 times as great as that

at the Earth's equator.

Hence the projectile would have to move a/289, or 17 times as

fast as a point on the Earth's equator, and would therefore have to

perform 17 revolutions per day.*

Therefore the period of revolution = j\ of a day.

(ii.) Assuming the law of gravitation, the periodic times and dis-

tances of the projectile and Moon must be connected by Kepler's

Third Law. Hence, taking the Moon's sidereal period as 27J days,

we have, if a = Earth's rad., d = Moon's dist.,

.'. d^ = a^x (17 X 27i)2 = a3{i^}a = a^ . 215915-i;

.-. d = ax 3/2159151 = 59-99a;

.•. distance of Moon = 60 x Earth's radius almost exactly.

424. Effect of Moon's Attraction.—Moon's Mass.—
If we take account of the Moon's attraction on the Earth we
must introduce a correction analogous to that made in Kepler's

Third Law (§ 421). If If, m are the masses of the Earth
and Moon, the whole relative acceleration is k(M-\-m)ld-^,

instead of TcMId^. But, if g^ is the acceleration of gravity on
the Earth's surface, g^ = TcMfa"

;

.'.k = g^a'^lM,

and, if Tis the length of the sidereal month, then, by § 421,

47r2^8 = k{M+m)T^= g,a'^^^ T'.

This formula might be used (and has been used by Airy)

to find m/M, the ratio of the Moon's to the Earth's mass, in

terms of the observed values of a, d, ^q, 1\ It is not, how-
eve)-, a very accurate method, owing to the smallness of m/M.

* Relative to the Earth it would perform 16 or 18 revolutions per
day, according to whether it was revolving in the same or the
opposite direction to the Earth.
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425. To find the ratio of the Sun's Mass to that
of the Earth.

Let S, M, m be the masses of tlie Sim, Earth, and Moon,
d, r the distances of the IMoon and Sun from the Earth, T, Y
the lengths of the sidereal lunar month and year respectively.

Then, if h be the gravitation constant, the Earth's attraction

on the Moon is = IcMmjiP^ and its intensity is kM.
The Sun's attraction on the Earth is = kSM/r^, and its

intensity is kS.

Therefore, by §415, Corollary,

kM.r= 4Tr'd\ kS.Y' = ^TT'r'
;

whence the ratio of the Sun's to the Earth's mass may be
found.

If we take account of the attraction of the smaller body
on the larger, the whole acceleration of the Earth, relative to

the Sun, is k {S-\-M-\-m)/r- (since the Sun is attracted by
the 3Ioon as well as the Earth), and that of the Moon, relative

to the Earth, is k {M-\-m)/d^. Hence the corrected or more
exact formula is

S-\-3I-\-m : M-\-m = ii
: ^^

.

Since the Moon's mass is about -^\ of that of the Earth,

the first or approximate formula can only be used if the cal-

culations are not carried beyond two significant figures.

In this manner it is found that the Sun's mass is about

331,100 times that of the Earth.

Examples.

1, To compare, roughly, the masses of the Earth and Sun, taking

the Sun's distance to be 3S0 times the Moon's, and the number of

sidereal months in the year to be 13.

We have S:M =^ :Vi

- "^^^« «^ ^^^'^ =^ = SO' X 390 = 351,000.
mass of Earth 13-

To the degree of accuracy possible by this method, the Sun'a

mass is therefore 350,000 times that of the Earth.
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2. To find the ratio of the masses, taking the Moon's mass as -^V

of the Earth's, and the number of sidereal months in the year as 13^.

8 +M +m _ 39Q3 _ 390^ x 3^ ^ 5338710 ^ oooggQ
M +m (13i)-^ 402 "^ 16

'

.'. 8 = 333668 (M+m) = 333668 (1 + ^\) M = 337,787 M.

426. To determine the mass of a planet which has
one or more satellites.

The method of the last paragraph is obviously applicable

to the case of any planet which has a satellite. We require

to know the mean distance and the periodic time of the

satellite. The former may be easily found by observing the

maximum angular distance of the satellite from its primary,

the distance of the planet from the Earth at the time of

observation having been previously computed. The periodic

time of the satellite may also be easily observed.

Let M', rn be the masses of the planet and satellite, <?'

their distance apart, r' their distance from the Sun, T' the

period of revolution of the satellite, F' the planet's period of

revolution round the Sun. Using unaccented letters to re-

present the corresponding quantities for the Earth and Moon
we have, roughly,

h d" r'-' r« d'
'

or, more accurately,

k d'' r'

__ (S+M+m) r^ _ (31+m) T^

r» d'

whence the mass of the planet, or, more correctly, the sum of

the masses of the planet and satellite, may be determined in

terms of the mass of the Sun, or the sum of the masses of the
Earth and Moon. "We do not require to know the periodic

time and mean distance of the planet from the Sun, since the
above expressions enable us to express the required mass,
Jf'+w', in terms of the year and mean distance of the
Earth, or in terms of the lunar month and the mean distance

of the Moon.
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Example.—To find the mass of Uranus in terms of that of the

Sun, having given that its satellite Titania revolves in a period of

8 days 17 hours at a distance from the planet = "OOS times the

distance of the Earth from the Sun.

Let M be the mass of Uranus, then we have

and, by Kepler's Third Law, P/T'-is the same for Uranus as for the

Earth. Hence

' • (8d. 17h.)^' (365d.6h.)2'

. 3f ^ / 3
Y^^

/ 365d. fih. y•*
S llOOO/ ^ \ 8d. 17h. J

^27^^ /8766\2

109
"^

\ 209 /

= 21^53
"^"^'^-

Thus, the mass of Uranus is to that of the Sun in the ratio of

1 to 21,053.

*427. The Masses of Mercury and Venus (which have no satellites)

could theoretically be found by determining their mean distances

from the Sun by direct observation, and comparing them with
those calculated from their periodic times by Kepler's Third Law.
For, if M' is the mass of such a planet, we have

iS^M')T'^ ^ (S +M+ m) Y^

This enables us to find the sum of the masses of the Sun and
planet, and, the Sun's mass being known, the planet's mass could

be found.

This method is, however, worthless, because the •masses of Mercury
and Venus are only about g-oxj^ooo ^"^ tooVoo of ^^^^ o^ ^^^ Sun,

and in order to calculate one significant figure of the fraction M'/8
it would be necessary to know all the data correct to about seven
significant figures, a degree of accuracy unattainable in practice.

For this reason it is necessary to calculate the maases of these

planets by means of the perturbations they produce on one another

and on the Earth ; these perturbations will be discussed in the next

chapter.
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428. Centre of Mass of the Solar System.—When
the masses of the various planets have heen found in terms
of the Sun's mass, the position of the centre of mass of the

system can he found for any given configuration, and can
thus be shown to always lie very near the Sun.

Examples.

1. To find the distance of the centre of mass of the Earth and
Sun from the centre of the Sun.

Here the mass of the Sun is 331,100 times the Earth's mass, ami
the distance between their centres is about 92,000,000 miles. Hence,
the centre of mass of the two is at a distance from the Sun's centre

of about .
92,000,000 _ 278 miles.
331,100 + 1

2. To find the centre of mass of Uranus and the Sun, and to show
that it lies within the Sun.
The distance of Uranus from the Sun is 19'2 times the Earth's

distance, and its mass is 1/21053 of the Sun's. Hence the CM. is

at a distance from the Sun's centre of

92,000,000x19-2 ., oo nnn «,-i .
' ^,' „ miles = 83,900 miles.
21053 +

1

'

The Sun's semi-diameter is 433,200 miles ; hence the centre of mass
of the Sun and Uranus is at a distance from the Sun's centre of
rather less than ^ the radius.

3. In the case of Jupiter, the mean distance is 5"2 times that of
the Earth, and the mass is 1/1050 of that of the Sun ; hence the
CM. is at a distance

5:2^^00^000 = 466,000 miles.
1050 +

1

This is just greater than the Sun's radius (433,200), showing that
the centre of mass lies just without the Sun's surface.
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Section III.

—

The- Eartlih 3Ia8s and Bensity.

429. Tlie so-called " Weight of the Earth " really

means the Earth's mass, and the operation called ''weighing
the Earth," in some of the older text-books, means finding the
mass of the Earth. In the hist section we explained how to

compare the masses of the Sun and certain planets with that
of the Earth, and in the next chapter we shall give methods
applicable to a planet having no satellites. But before the
masses can be expressed in pounds or tons it is necessary to

determine the Earth's mass in these units. The methods of

doing this all depend on comparing the Earth's attraction

with that of a body of known mass and distance ; and the only
difficulty lies in determining the latter attraction, since the

force between two bodies of ordinary dimensions is always
extremely small. The following methods have been used.

The first two are by far the best.

(1) By the "Cavendish Experiment," or the balance.

(2) By observations of the influence of tides in estuaries.

(3) By the "Mountain" method.

(4) By pendulum experiments in mines.

430. The " Cavendish Experiment " owes its name to

its having been first used to determine the Earth's mass by
Cavendish, about the year 1798. The essential principle of

the method consists in comparing the attractions of two heavy
balls of known size and weight with the Earth's attraction.

Since the attraction of a sphere at any point is proportional

directly to the mass of the sphere and inversely to the square

of the distance from its centre, it is evident that by comparing
the attractions of different spheres—such as the Earth and the

experimental ball of metal—we can find the ratio of their

masses.

The comparison is effected by means of a torsion balance.
Two equal small balls A, B are fixed to the ends of a light

beam suspended from its middle point by means of a slender

vertical thread or "torsion fibre" (in his recent experiments,

Professor C. V. Boys has used a fine fibre of spun quartz), so

as to be capable of twisting about in a horizontal plane

(the plane of the paper in Eig. 143). Two heavy metal balls

C, I), are brought near the small balls A, B (as shown in the
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figure), and their attraction causes the beam to turn about 0,

say from its original position of rest XX' to the position AB.
As the beam turns the fibre twists ; this twisting is resisted by
the elasticity of the fibre, which produces a couple, propor-

tional to the angle of twist XOA, tending to untwist it again.

Let us call this couple /x Z XOA, where / is a constant

depending on the fibre, called its " torsional rigidity

^

The beam AB assumes a position of equilibrium when the

moments about of the attractions of the large spheres C, JD

on the balls A, B, just balance the " untwisting couple "

/x Z XOA. The angle XOA being measured, and the

dimensions of the apparatus being supposed known, the

attractions of the spheres can now be determined in terms of

the torsional rigidity.

Fig. 143.

The value of /is found in terms of absolute units of couple

by observing the time of a small oscillation of the beam when
the balls A, B have been removed. [The beam will then
swing backwards and forwards like the balance wheel of a

chronometer (§204). The greater the torsional rigidity, the

more frequently will it reverse the motion of the beam, and
the more frequent will be the oscillations.*]

Hence finally the attractions between the known masses
C, I) and A, B are found in terms of known units of force,

and by comparing these attractions with that of gravity the

Earth's mass is found.

* The student who has read Rigid Dynamics should work out the
formula.

ASTEON. 2 B
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In practice, instead of measuring the angle XOA, the masses C, 7>

are subsequently placed on the reverse side of the beam, say with
their centres at c, d, and they now deflect the beam in the reverse
direction, say to ab. The angle measured is the whole angle aOA,
and this angle is twice the angle XOA, if the positions CD and cd

are symmetrically arranged with respect to the line XOX'.
In the earlier experiments the beam AB was six feet long, and the

masses G, D were balls of lead a foot in diameter. Quite recently,

however. Professor C V. Boys, by the use of a quartz fibre for the
suspending thread, has performed the experiment on a much smaller
scale, the whole apparatus being only a few inches in size and being
highly sensitive. He uses cylinders instead of spheres for the
attracting bodies, and this introduces extra complications in the
calculations.

Although the above description shows the general principle of th&
method, many further precautions are required to ensure accuracy.

A full description of these would be out of place here.

431. The common balance has also been used to deter-

mine the Earth's mass. In this case the differences of weight
of a body are observed when a hirge attracting mass is placed

successively above and below the scale-pan containing it.

Example.—To find the Earth's mass in tons, having given that th&
attraction of a leaden ball, weighing 3 cwt., on a body placed at a
distance of 6 inches from its centre is -0000000432 of the weight of

the body.
Let M be the mass of the Earth in tons.

The mass of the ball in tons is = ^^.

The Earth's radius in feet = 39(30 x 5280 = 20,900,000 roughly j

and the distance of the body from the ball in feet = ^.

Hence, since the attractions of the Earth and ball are proportional
directly to the masses and inversely to the squares of the distances,

from their centres,

3 IT
.-. -0000000432 : 1 = ^,^

i^y (20,900,000)-'^

'

. M = (20,900,000)2 X ^% ^ 8 x 209" x 10^

X -0000000432 5 x 432 x 10 - ^^

5 432 2160

= 6067 X 10^8.

Hence the mass of the Earth is (roughly) 6067 million billion

tons.
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432. To determine the Earth's Mass by observa^
tions of the Attraction of Tides in Estuaries.—A
method -which admits of very great accuracy is that in

which the mass of the Earth is found by comparing it with
that of the water brought by the tide into an estuary. Con-
sider an observatory situated (like Edinburgh Observatory)

due south of an arm of the sea, whose general direction ia

east and west. The direction of its zenith, as shown either

by a plummet or by the normal to the surface of a bowl of

mercury, is not the same at high tide as at low, becanse tha

additional mass of water at high tide produces an attraction

which deflects the plummet and the nadir point northward,

and hence displaces the zenith towardrs the south. HeiiccJ

the latitude of the observatory is loss at high tide than at

low ; and the difference is a measurable quantity. Tlie great

advantage of this method is that the mass which deflects tha
plumb-line can be measured with great certainty ;. for the

density of the sea-water is exactly known (and, unlike that of

the rocks in the next methods, is uniform throughout) and
the shajje and height of the layer of water brought in are

known from the ordnance maps, and the tide measurements
at the port.

*433. In the Pendulum Method the values of g, the
acceleration of gravity, are compared by comparing the oscil*

lations of two pendulums at the top and bottom of a deep
mine. The difference of the two values is due to the attrac

tion of that portion of the Earth which is above the bottom
of the mine ; this exerts a downward pull on the upper pen-'

dulum, and an upward pull on the lower one. If the Earth
were homogeneous throughout, the values of g at the top and
bottom would be directly proportional to the corresponding

distances from the Earth's centre. If this is not observed ta

be the case, the discrepancy enables us to find the ratio of the
density of the Earth to that of the rocks in the neighbourhood
of the mine. If the latter density is known, the Earth's}

density can be found, and knowing its volume, its mass can

be computed. But this method is very liable to considerable

errors, arising from imperfect knowledge of the density of the
rocks overlying the mine.



566 ASTEONOMT.

*434. In the Mountain Method the Earth's attraction is com-
pared with that of a mountain projecting above its surface. Suppose
a mountain range, such as Schiehallien in Scotland, running due B.

and W. ; then at a place at its foot on the S. side the attraction of

the mountain will pull the plummet of a plumb line towards the N.,

and at a place on the N . side the mountain will pull the plummet to

the S. Hence the Z.D. of a star, as observed by means of zenith

sectors, will be different at the two sides, and from this difference

the ratio of the Earth's to the mountain's attraction may be found.

In order to deduce the Earth's density it is then necessary to

determine accurately the dimensions and density of the mountain.
This renders the method very inexact, for it is impossible to find

with certainty the density of the rocks throughout every part of the

-mountain.

435, Determination of Densities.—Gravity on the
Surface of the Sun and Planets.—When the mass and
volume of a celestial body have been computed, its average

•density can, of course, be readily found. By dividing the

mass in pounds by the volume in cubic feet, we find the

average mass per cubic foot, and since we know that the

mass of a cubic foot of water is about 62| lbs., it is easy to

compare the average density with that of water. The deter-

-mination of densities is particularly interesting, on account of

the evidence it furnishes regarding the physical condition of

the members of the solar system. The Earth's density is

about 5-58.

From knowing the ratios of the mass and diameter of the

Sun or a planet to that of the Earth, we can compare the

intensity of its attraction at a point on its surface with the

intensity of gravity on the Earth.

It may be noticed that attraction of a sphere at its surface is pro-

portional to the product of the density and the radius.

For the attraction is proportional to mass -»- (radius)", and the

mass is proportional to the density x (radius)^; .*. the attraction

at the surface is proportional to the density x radius.

Examples.

1. To find the Earth's average density and mass, having given

that the attraction of a ball of lead a foot in diam'ter, on a particle

placed close to its surface, is less than the Earth's attraciion in the

proportion of 1 : 20,500,000, and that the density of lead is 11"4 times

that of water.
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Let D be the average density of the Earth. Ther, since the radii

of the Earth and the leaden bail are i and 20,900,000 feet respectively,

and the attractions at their surfaces are proportional to their

densities multiplied by their radii,

.-. 1 : 20,500,000 = ll-4xi : Px 20,900,000;

/. average density of Earth D = 5-7x|gt = 5-6.

Hence the average mass of a cubic foot of the material forming-

the Earth is 56 x 625 pounds. But the Earth is a sphere of volume

Att (20,900,000)3 cubic feet.

Hence the mass of the Earth, with these data,

= |ir X 2093 X lO^s X 5-6 X 62-5 pounds

= 1338 X 1022 pounds = 597 x lO^^ tons.

2. To calculate the mean density of the Sun from the following:

Mass of O = 330,000 . (mass of 9) ;

Density of 9 = 558
;

O's parallax = 8"8"; 0's 'angular semi-diameter = 16'.

The radii of the Sun and Earth being in the ratio of the Sun's:

angular semi-diameter to its parallax (§ 258), we have

0's radius ^ J^ = ?60 ^ ^^^.^ .

9's radius 8'8" 8'8

/. volume of Sun = (109-1)3 , (^qI. of Earth)

= 1,298,000 . (vol. of Earth) roughly.

But mass of Sun = 330,000 . (mass of Earth)
;

.
density of Sun ^ 330 ^ J, ^ery nearly;" density of Earth 1298 3-9

.*. density of Sun = 1'4.

3. To find the number of poundals in the weight of a pound at the

surface of Jupiter, taking the planet's radius as 43,200 miles and
density I-5 times that of water.

Taking the Earth's radius as 3960 miles and density as 5*58, wa-

have
(gravity at surface of Jupiter) : (gravity on Earth)

= 1-33 X 43,200 : 5-58 x 3960.

But at the Earth's surface the weight of a pound

= 32'2 poundals

;

therefore on the surface of Jupiter the weight of a pound

000 1-33x43200 , ,

= ''•'"
5-58x3960 P"""""'"

= 83-7 poundals.
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EXAMPLES.—XIII.

1. Taking Nepttine's period as 30 years, and the Earth's velocity

fis 9j miles per second, find the orbital velocity of Neptune.

2. If we suppose the Moon to be 61 times as far from the Earth's
centre as we are, find how far the Earth's attraction can pull the
JSIoon from rest in a minute.

3. If the Earth possessed a satellite revolving at a distance of only
6,000 miles from the Earth's surface, what would be approximately
its periodic time, assuming the Earth to be a sphere of 4,000 miles
radius ?

4. Assuming the distance between the Earth's centre and the
Jdoon's to be 240,000 miles, and the period of the Moon's revolution

28 days, find how long the month would be if the distance were
«nly 80,000 miles.

5. Calculate the mass of the Sun in terms of that of Mars, given
that the Earth's mean distance and period are 92 x 10® miles and
S65i days, and the mean distance and period of the outer satellite

of Mars are 14,650 miles and Id. 6h. 18m.

6. Show that the periodic time of an asteroid is 3J years, having
given that its mean distance is 2'305 times that of the Earth.

7. Show that we could find the Sun's mass in terms of the Earth's,

from exact observation of the periods and mean distances of the

JEarth and an asteroid, by the error produced in Kepler's Third Law
in consequence of the Earth's mass.

8. Show that an increase of 10 per cent, in the Earth's distance

from the Sun would increase the length of the year by 56"14 days.

9. The masses of the Earth and Jupiter are approximately

oWoo ^^d TWO respectively of the Sun's mass, and their distances

jrom the Sun are as 1 : 5. Show that Kepler's Laws would give the

periodic time of Jupiter too great by more than 2 days.

10. Prove that the mass of the Sun is 2 x 10^^ tons, given that

the mean acceleration of gravity on the Earth's surface is 9'81

metres per second per second, the mean density of the Earth is

5"67, the Sun's mean distance 1'5 x 10^ kilometres, a quadrant of the

JJarth's circumference 10,000 kilometres, and taking a metre cube of

vater to be a ton.
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11. Having given that the constant of aberration for the Earth
is 20'49", and that the distance of Jupiter from the Sun is 5"2 times

the distance of the Earth from the Sun, calculate the constant of

aberration for Jupiter.

12. If the mass of Jupiter is yoVo ^^ the mass of the Sun, show
that the change in the constant of aberration caused by taking into

account the mass of Jupiter is 0004" nearly (see Question 11).

13. Find the centre of mass of Jupiter and the Sun. Hence find

the centre of mass of Jupiter, the Sun, and Earth, (1) when Jupiter

is in conjunction, (2) when in opposition. (Sun's mass = 1,048

times Jupiter's = 332,000 times Earth's. Jupiter's mean distance
= 480,000,000 miles ; Earth's = 93,000,000 miles.)

14. If the intensity of gravity at the Earth's surface be 32"185

feet per second per second, what will be its value when we ascend
in a balloon to a height of 10,000 feet ? (Take Earth's radius= 4,000

miles and neglect centrifugal force.) Would the intensity be the

same on the top of a mountain 10,000 feet high ? If not, why not ?

15. Show how by comparing the number of oscillations of a
pendulum at the top and bottom of a mountain of known density,

the Earth's mass could be found.

16. How would the tides in the Thames affect the determination
of meridian altitudes at Greenwich observatory theoretically ?

17. If the mean diameter of Jupiter be 86,000 miles, and his mass
315 times that of the Earth, find the average density of Jupiter.

18. If the Sun's diameter be 109 times that of the Earth, his mass
330,000 times greater, and if an article weighing one pound on the
Earth were removed to the Sun's surface, find in poundals what its

weight would be there.

19. Taking the Moon's mass as -gx that of the Earth, show that
the attraction which the Moon exerts upon bodies at its surface is

only about l-5th that of gravity at the Earth's surface.

20. If the Earth were suddenly arrested in its course at an
eclipse of the Sun, what kind of orbit would the Moon begin to
describe ?
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EXAMINATION PAPER.—XIII.

1. State reasons for supposing that tlie Earth moves round the
Sun, and not the Sun round the Earth.

2. State Kepler's Laws, and give Newton's deductions therefrom.

3. If the Sun attracts the Earth, why does not the Earth fall into

the Sun ?

4. Show that the angular velocities of two planets are as the cubes
of their linear velocities.

5. State Newton's Law of Gravitation, and prove Kepler's Third
Law from it for the case of circular orbits, taking the planets small.

6. Explain clearly (and illustrate by figures or otherwise) 'what
is meant by a force varying inversely as the square of the distance.

7. Are Kepler's Laws perfectly correct ? Give i he reason for your
answer. What is the correct form of the Third Law if the mapses
of the planets are supposed appreciable as compared with the mass
of the Sun ?

8. How can the mass of Jupiter be found ?

9. Show that if a body describes equal areas in equal times about

a point, it must be acted on by a force to that point.

10. Find the law of force to the focus under which a body will

describe an ellipse ; and if G be the acceleration produced by the

force at unit distance, T the periodic time, and 2a the major axis

of the ellipse, find the relation between C, a, T.



CHAPTEE XIV,

FURTHER APPLICATIONS OF THE LAW OF
GRAVITATION.

Section I.

—

The Moon's Mass— Concavity of Lunar Orbit.

436. The Earth's Displacement due to the Moon.—
In Section II. of the last chapter we saw that when two
bodies are under their mutual attraction they revolve about

their common centre of mass. Thus, instead of the Moon
revolving about the Earth in a period of 27^ days, both

bodies revolve about their centre of mass in this period,

although from the Moon's smaller size its motion is more
marked.

In this case both the Earth and Moon are under the

attraction of a third body—the Sun—which causes them
together to describe the annual orbit. But the Sun's dis-

tance is so great compared with the distance apart of the

Earth and Moon, that its attraction is very nearly the same,

both in intensity and direction, on both bodies. To a first

approximation, therefore, the resultant attraction of the Sun
is the same as if the masses of both the Earth and Moon were
collected at their common centre of mass. Hence it is strictly

the centre of mass of the Earth and Moon, and not the centre

of the Earth, which revolves in an ellipse about the Sun with

uniform areal velocity, in accordance with the laws stated in

§ 155. And, owing to the revolution of the Moon, the Earth's

centre revolves round this point once in a sidereal month,

threading its way alternately in and out of the ellipse

described, and being alternately before and behind its mean
position.
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This displacement of the Earth has been used for finding

the Moon's mass in terms of the Earth's, by determining the

common centre of mass of the Earth and Moon, as follows.

{E^^^B

Fig. 144.

Let E^,M^, G^ (Eig. 144) be the positions of the centres ofthe

Earth and Moon, and their centre of mass, at the Moon's last

quarter, E^, M^, G^Siia.dE^,M^, G^ their positions at newMoon
and at first quarter respectively, S the Sun's centre.

Then, at last quarter, E^ is behind (tj, and the Sun's longi-

tude, as seen from E^^ is less than it would be as seen from G^

by the angle E^SG-^. At first quarter, E.^ is in front of 6^3,

and therefore the Sun's longitude is greater at E.^ than at G^

by the angle G^SE^. If, then, the observed coordinates of

the Sun be compared with those calculated on the supposition

that the Earth moves uniformly {i.e., with uniform areal

velocity), its longitude will be found to be decreased at last

quarter and increased at first quarter.

Erom observing these displacements the Moon's mass may
be found. Eor, knowing the angle of displacement E^SG^
and the Sun's distance, the length E^G^ may be found. Also

the Moon's distance E^M^ is known. And, since G^ is the
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centre of mass of the Earth and Moon,

mass of Moon : mass of Earth •= E-^0^ : G^M^\

whence the mass of the Moon can be found.

The Sun's displacement at the quarters could be found by
meridian observations of the Sun's R.A. with a transit circle.

The displacement of the Earth will also give rise to an

apparent displacement, having a period of about one month,

in the position of any near planet ; this could be detected

by observations on Mars, when in opposition, similar to those

used in finding solar parallax (§ 339).

From this and other methods it is found that the mass of

the Moon is about 1/81 of that of the Earth. The Moon's

density^ as thus deduced, is about 3-44, or f of that of the

Earth.

Example.—To compare the masses of the Moon and Earth, having
given that the Sun's displacement in longitude at the Moon's
quadratures is equal to f of the Sun's parallax.

Since Z E^SG^ = f the angle subtended by Earth's radius at S,

therefore E,Q, = 1 (Earth's radius).

But
.-.

EyMi

EiMi

= 60 (Earth's radius) ;

= 80. EiGr,

= 79.:eA,
and massJ of Moon : mass of Earth =^iGi : GyMy == 1 : 795

.*. the Moon's mass = 1/79 of the Earth's mass.

437. Application to Determination of Solar Paral-
lax.—If the Moon's mass be found by any other method, the

above phenomena give us a means of finding the Sun's

parallax and distance. Eor we then know JS^ G^ : G^M^^ and

therefore E^G^ and the angle E^SG^ is found by observation.

But the exact ratio of JE^SG^ to the parallax is known, for it

is equal to that of E^ G^ to the Earth's radius ; hence the Sun's

parallax and distance can be found. Since the Moon's mass
can be found with extreme accuracy by many different

methods, this method is quite as accurate as many that have

been used for finding the solar parallax.

*438. Concavity of the Moon's Path about the Sun.—The Moon,
by its monthly orbital motion about the Earth, threads its way alter-

nately inside and outside of the ellipse which the centre of mass of

the Earth and Moon describes in its annual orbit about the Sun.
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Hence the path described by the Moon in the course of the year is

a wavy curve, forming a series of about thirteen undulations about
the ellipse. It might be thought that these undulations turned
alternately their concave and convex side towards the Sun, but the
Moon's path is really always concave ; that is, it always bends
towards the Sun, as shown in Fig. 145, which shows how the path
passes to the inside of the ellipse without becoming convex.
To show this it is necessary to prove that the Moon is always

being accelerated towards the Sun. Let n, n' he the angular velo-

cities of the Moon about the Earth and the Earth about the Sun
respectively. Then, when the Moon is new, as at Mo (Fig. 145), its

acceleration towards O^, relative to G^, is n^ . M2O2. But O^ has a
normal acceleration n'^G^^ towards 8. Hence the resultant accelera*

tion of the Moon Ifo towards S is n'^G2S—n^MiG2.

-*s

Fig. 145.

Now, there are about 13^ sidereal months in the year ; therefore
n = 13Jn'. Also E^S is nearly 400 times £'2^2, and therefore GjS is

slightly over 400 times G^M^. Therefore roughly
n'-G^S : n-M^Gi = 400 : 182 ;

.-. n'^G^S > n-G^M^.
Thus, the resultant acceleration of M^ is directed toicards, not avjay

from S, even at Ifo, where the acceleration, relative to Go, is directly

opposed to that of G.j- Therefore the Moon's path is constantly
being bent (or deflected from the tangent at M.2) in the direction of

the Sun, and is concave towards the Sun.

*439. Alternate Concavity and Convexity of the Path of a
Point on the Earth.—In consequence of the Earth's diurnal rota-

tion, combined with its annual motion, a point on the Earth's equator
describes a wavy curve forming 365 undulations about the path
described by the Earth's centre. In this case, however, it may be
easily shown in the same way that the acceleration of the point
towards the Earth's centre is greater than the acceleration of the
Earth's centre towards the Sun. The path is, therefore, not
always concave to the Sun, being bent away from the Sun in

the neighbourhood of the pointswhere the two component accelera-

tions act in opposite directions.
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Section II.— 'The Tides.

Ill the last section we investigated the displacements due to

the Moon's attraction on the Earth as a whole. We shall

now consider the effects arising from the fact that the Moon's
attractive force is not quite the same either in magnitude or

direction at different parts of the Earth, and shall show how
the small differences in the attraction give rise to the tides.

440. The Moon's or Sun's Disturbing Force.—Let C,

J/be the centres of the Earth and Moon ; A CA' the Earth's

diameter through M ; B, B' points on the Earth such that

MC = MB = MB'. Let M, m denote the masses of the

Earth and Moon, a the Earth's radius, d the Moon's distance.

The resultant attraction of the Moon on the Earth as a

whole is kMmj CM^, and the Earth is therefore moving with
acceleration km/ CM^ towards the common centre of mass of

the Earth and Moon, as shown in §§ 422, 424.

Fig. 146.

(i.) Now at the sublunar point A the Moon's attraction on
unit mass is km/AM^ and is greater than that at C (since

AM < CM). Hence the Moon tends to accelerate A more
than C and thus to draw a body at A away from the Earth,
with relative acceleration F, where

Since ajd is a small fraction, we have, to a first approximation,

F=^km^^=2k^CA,
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(ii.) At A' the Moon's attraction per unit mass is 'kmjAM'^^
and is less than that at C, since A'M> CM. Hence the Moon
tends to accelerate C more than A', and thus to draw the
Earth away from A' with relative acceleration F\ where

/J LF'= l-m
\C3P A'M

= k

\ - icm
CA' {CM+A'M )

2a \-^al2(l

d^ {l+aldf
To a first approximation, therefore,

F' = hni
2a =z2k^ CA\

Thus a body either at A or A' tends to separate from the
Earth, as if acted on by a force atvay from C, of magnitude
approximately = llmajd^ per unit mass.

^
re>^f ^zr~~~~^^^^=^=====^

K A\s C N/A

Fig. 147.

(iii.) Consider now the effect of the Moon's attraction on a

body at B. This produces a force per unit mass of kmjBM'^y

which may be resolved into components

- y^QE parallel to GM,

and

BW BM

Since we have taken BM = CM, the first component is

equal to km/CM'^ ; that is, to the force at C. This component

therefore tends to make a body at B move with the rest of

the Earth, and produces no relative acceleration. Therefore

the Moon tends to draw a body at B towards the Earth with

relative acceleration /, represented by the second component
;
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The point B is approximately the end of the diameterB Cff
perpendicular to ^ C (since 5M, CM, B'M are nearly parallel

in the neighbourhood of the Earth)

.

Hence the relative acceleration at B is approximately per-

pendicular to CM, and its magnitude

= hni — = km —:-.

iV (I-

Similarly at B ' the !Moon tends to draw a body towards C,

with relative acceleration /= hnajd^.

At either of these points, B, B' , therefore, a body tends to

approach the Earth, as if acted on by a force towards the Earth's

centre, of magnitude hnald^ per unit mass. Generally, the
Moon's attraction at any point tends to accelerate a body,

relatively to the Earth, as if it were acted on by a force depend-
ing on the difference in magnitude and direction between the
Moon's attractions at that point and at the Earth's centre.

This apparent force is called the Moon's disturbing
force or tide-generating force. We see that the dis-

turbingforceproduces a pull along^^' and a squeeze alongBS

>

A similar consequence arises from the attraction of the Sun.
The Sun's actual attraction on the Earth as a whole keeps the

Earth in its annual orbit, but the variations in the attraction

at different points give rise to an apparent distribution of

force on the Earth which is the Sun's disturbing force or
tide-generating force.

441. To find approximately the Moon's or Sun's
Disturbing Force at any point.

Let be any pomt of the Earth. Draw ON perpen-
dicular on CM. Then the difference of the Moon's attractions

at and iV tends to accelerate towards N, with a relative

acceleration 'km,NO\d^\\yY § 440 (iii-)]- Also, the difference

of the attractions at N, C tends to accelerate iVaway from C
with a relative acceleration llm. CNjd^ [by § 440 (i,)].

The whole acceleration of 0, relative to C, is compounded
of these two relative accelerations. Therefore, if X Fbe the
components of the disturbing force at in the directions

CN, NO,
^ ^j CN ^ J NOX = 2lcm . -—, Y= —km . -—

.

d^ d^
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442. Hence the following geometrical construction :

—

On CNproduced take a point H such that

Then the line Oil represents the disturling force at in

direction, and its magnitude is

T? 1 OE

The Sun's tide-raising force may be found exactly in the

same way. The force is everywhere directed towards a point

on the diameter of the Earth through the Sun, found by a

similar construction to the above. And if r, S denote the

Sun's distance and mass, the force is proportional to Sjr^

instead of mjd^.

In all these investigations we see that the tide-raising force

due to an attracting body is proportional directly to its mass

and inversely to the cube (not the square) of its distance.

From this it is easy to compare the tide-raising forces due
to different bodies acting at different distances.

Examples.

1. To compare the tide-raising forces due to the Sun and Moon.
The masses of the Sun and Moon are respectively 331,000 and

•^ times the Eai-th's mass. Also, the Sun's distance is about 390
times the Moon's.

.*. Sun's tide-raising force : Moon's tide-raising force

= §5L002
:
J- = 331 : ^^ = 331 X 3 : 13^ = 993 : 2197

(390)3 81 3 X 3-^

= 33 : 73 nearly =3:7 nearly.

Thus the Sun's tide-raising force is about tliree-sevenths of that

of the Moon.

2. To find what would be the change in the Moon's tide-raising

force if the Moon's distance were doubled and its mass were in-

creased sixfold.

If /,/'betheold and new tide-raising forces at corresponding points,

/'•/—_§-•_. • f' — if
J

•
J - 2^ '

l^'
•• •' ~ *•'•

Therefore the tide-raising force would have three-quarters of its

present value.

3. To compare the Moon's tide-raising forces at perigee and
apogee.
The greatest and least distances of the Moon being in the ratio of



FURTHER APPLICATIONS OF THE LAW OF GRAVXTATION. 379

1+1 to 1-tV> or 19 to 17 (§ 270), the tide-raising power at perigee

is greater than at apogee in the ratio of 19=^
:

17=^ or 6859 : 4913, or

roughly 7:5.
i j? v o ,

4. To compare the maximum and minimum values of the Sun s

tide-raising force.

The eccentricity of the Earth's orbit being ^\, these are m the

ratio of (1 -t-trV)^ = (1—oV)^ o^ approximately 1 +^ : 1-^, or

21 : 19. As before, the force is greatest at perigee and least at

apogee.

443. The Equilibriuin Theory of the Tides.— Let
us imagine the Earth to be a solid sphere covered with an-

ocean of uniform depth. If we plot out the disturbing forces

at different points of the Earth by the construction of § 442,

w-e shall find the distribution represented in Eig. 148, the

lines representing the forces both in magnitude and direction.

Here the disturbing force tends to raise the ocean at the

sub-lunar point A and at the opposite point A', and to de-

press it at the i)oints B, B'. At intermediate points it tends

to draw the water away from B and B', towards A and A*.

Hence the surface of the ocean will assume an oval form,

as represented by the thick line in Fig. 148, and there will

be high water at the sublunar point A and the opposite point

A', low water along tlie circle of the Earth BB', distant 90°'

from the sublunar point. Thus we have the same tides

occurring simultaneously at opposite sides of the Earth.

It may be shown that the oval curve aha'b' is an ellipse

whose major axis is aa'. The surface of the ocean, therefore,

assumes the form of the figure produced by revolving this

ellipse about its major axis. This figure is called a 'prolate

spheroid, and is thus distinguished from an oblate spheroid,

which is formed by revolution about the minor axis.

ASTRON. 2 c
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But though this is the form which the ocean-would assume
if it were at rest, a stricter mathematical investigation shows
that the Earth's rotation would cause the surface of the sea

to assume a very different form.

In fact, if the Earth were covered over with a sufjUcienthj

shallow ocean of uniform depth, and rotating, we should really

have low tide very near the sublunar point A and its anti-

podal point A', and high tide at the two points on the Earth's
equator distant 90° from the Moon (Eig. 149).

If the Moon were to move in the equator, the equilibrium
theory would always give low water at the poles. This
phenomenon is uninfluenced by the Earth's rotation, and since

the Moon is never more than about 28° from the equator, we
see that the Moon's tide-raising force has the general effect

of drawing some of the ocean from the poles towards the
equator.

*4-14. A few other consequences of the equilibrium theory may
also be enumerated. (1) According to it the height of the tides, or
the difference of height between high and low water at any place, is

directly proportional to the tide-generating force, and consequently,
with the results of Example 1 of § 442, the heights of the solar and
lunar tides are in the proportion of 3 to 7. (2) Since the distortion

of the mass of liquid is resisted by gravity, the height of the tide

depends on the ratio of the tide-producing force to gravity, and
therefore is inversely proportional to the intensity of gravity, and
therefore to the density of the Earth ; if the density were halved,

the height of the tides would be doubled. (3) If the diameter of

the Earth were doubled, its density remaining the same, the inten-

sity of gravity and the tide-producing force would both be doubled,
since both are proportional to the Earth's radius. This would cause
the ocean to assume the same shape as before, only all its dimensions
would be doubled.t Consequently the height of the tide would also

be doubled, and it thus appears that the height of the tide is pro-
portional to the Earth's radius.

We thus have the means of comparing the tides which would be
produced on different celestial bodies, for the above properties show
that the height of tide is proportional to majDd^, where a and D are
the radius and density of the body under consideration, m, d the
mass and distance of the disturbing body.

*445. Canal Theory of the Tides.—As an illustration,

let us consider what would happen in a circular canal, not

extremely deep, supposed to extend round the equator of a re-

t Of course this is not a very strict proof.
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volving globe. Then, in Fig. 149, it is clear that the direction

of the disturbing force would, if it acted alone, cause the

water in the quadrants AJB and A£' to flow towards A
;

and, in the quadrants A'B and A'B', towards A', Hence this

force acts in the same direction as the Earth's rotation in the

quadrants B'A and BA', and in the opposite direction in AB
and A'B'. Hence, as the water is carried from A to B, it is

constantly being retarded, from B to A' it is accelerated,

from ^' to ^' it is retarded, and from B' to A it is again

accelerated, the average velocity being, of course, that of

the Earth's rotation. Hence the velocity is least at B and

B', and greatest at A and A\

Fig. 149.

Now, it is easy to see that when water moves steadily

in a uniform canal it must be shallow where it is swift and

deep where it is slow. For, if we consider any portion

of the canal, say AB, the quantity that flows in at one end

A is equal to the quantity that flows out at the other

end B. But it is evident that if the depth of the canal

were doubled at any point without altering the velocity of

the liquid, twice as much liquid would flow through the

canal ; consequently, in order that the amount which flows

through might be the same as before, we should have to halve

the velocity of the liquid. This shows that where the canal

is deepest the water must be travelling most slowly. Con-

versely, where the velocity is least the depth must be greatest,

and where the velocity is greatest the depth must be least.

Hence the depth is least at A and A^, and greatest at B and

B', just the opposite to what we should have expected from

the equilibrium theory.
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In a canal constructed round any parallel of latitude tlie

same would be the case ; and hence, if we could imagine a

uniform ocean replaced by a scries of such parallel canals,

low tide would occur at every place when the Moon was in

the meridian.

This theory (due to Xewton), though sounder than Laplace's

equilibrium theory, is still not quite mathematically correct.

The true explanation of the tides, even in an ocean of uniform

depth, is far more complicated, and quite beyond the scope

of this book.

446. Lunar Day and Lunar Time. — According to

either hypothesis, the recurrence of high and low water depends
on the Moon's motion relative to the meridian ; hence, in

investigating this, it is convenient to introduce another kind

of time, depending on the Moon's diurnal motion.

The lunar day is the interval between two consecutive

upper transits of the Moon across the meridian.

In a lunation, or 29|^ mean solar days, the Moon performs
one direct revolution relative to the Sun, and therefore per-

forms one retrograde revolution less relative to the meridian.

Thus 29| mean days = 28| lunar days ; whence the mean
length of a lunar day

= (l + sV) mean solar days = 24h. 50m. 32s. nearly.

The lunar time is measured by the Moon's hour angle,

converted into hours, minutes, and seconds, at the rate of 15°

to the hour.
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*447. Semi-diurnal, Diurnal and Fortnightly Tides.
—It has been found convenient to reiiard the tides produced
by the Moon's disturbing force as divided into three parts,

whose periods are half a day, a day and a fortnight, the
" day " being the lunar day of the last paragraph.

If we adopt the equilibrium theory as a working hypothesis,

the lunar tide must be highest when the Moon is nearest to

the zenith or nadir. Hence high tide takes place at the

Moon's upper and lower transits, when its zenith distance and
nadir distance are least respectively. But, for a place in N".

lat. (Fig. 150) when the Moon's declination is N., it describes a

small circle Q'R\ and its least zenith distance ZQ\^ less than its

least nadir distance NR ; hence the two tides are unequal
in height. This phenomenon can be represented by supposing

a diurnal tide, higli only once in a lunar day, combined
with a semi-diurnal tide, high twice in this period.

Again, the Moon's meridian Z.D. and jS'.D. go through a

complete cycle of changes, owing to the change of the Moon's
declination, whose period is a month. But after half a month,
the Moon's declination will have the same value but opposite

sign, and hence the diurnal circles QR, Q"R'\ equidistant

from the equator QR, are described at intervals of a fortnight.

But NR"= ZQ\ ZQ"= NR' ; hence the two tides have the

same heights. This can be represented by supposing a fort-

nightly tide of the proper height combined with the

diurnal and semi-diurnal ones.

In just the same way the smaller tides caused by the Sun
may be artificially represented by combining a diurnal
and semi-diurnal tide (the solar day being used) and a

six-monthly tide.

448. Spring and Neap Tides.—Priming andLagging
—We have hitherto considered chiefly the tides due to the

action of the Moon. In reality, however, the tides are due

to the combined action of the Sun and Moon, the tide-raising

forces due to these bodies being in the proportion of about

3 to 7 (Ex. 1, § 442). We shall make the assumption that the

height of the tide at any place is the algehraic sum of the

heights of the tides which would be produced at that place by
the Sun and Moon separately.
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At new or full Moon the Sun is nearly in the line AA',

and the tide-raising powers of the Sun and Moon hoth act in

the same direction, and tend to draw the water from B, B' to

A, A' \ hence the whole tide is that due to the sum of the

separate disturbing forces of the Sun and Moon. The tides

are then most marked, the height of high water and depth of

low water being at their maximum. Such tides are called

Spring Tides. We notice that the height of the spring

tide = 1 +^ or -JyO- of that of the lunar tide alone.

B

Moon

At the Moon's first or last quarter the Sun is in a

line BB' perpendicular to AA'. Hence the Sun tends to draw
the water away from A, A' to B, B\ while the Moon tends to

draw the water in the opposite direction. The Moon's action

being the greater, preponderates, but the Sun's action

diminishes the tides as much as possible. The variations

are therefore at their minimum, although high water still

occurs at the same time as it would if the Sun were absent.

These tides are called Neap Tides. The height of the

neap tide is the difference of the heights of the lunar and
solar tides, and is therefore f of that of the lunar tide.

Hence spring tides and neap tides arc in the ratio of

(roughly) 10 to 4.

For any intermediate phase of the Moon, the Sun's action

is somewhat different.

Between new Moon and first quarter, the Sun is over

a point S-^ behind A. Here the Moon tends to draw the

water towards A, A', and the Sun tends to draw the water

towards S^ and the antipodal point 8^. Therefore the com-

bined action tends to draw the water towards two points Q^ Q'
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between A and *S'i and between A and S.^ respectively, whose
longitudes are rather less than those of A andA respectively.

The resulting position of high water is therefore displaced to

the west, and the high water occurs earlier than it would ii

due to the Moon's influence alone. The tides are then said

to prime.

Between first quarter and full IKCoon the Sun is over

a point ^2 between B' and A ^ and the combined action of the

Sun and Moon tends to draw the water towards two points

R, R\ whose longitudes are slightly greater than those of

A, A'. The resulting high tides arc therefore displaced east-

wards, and occur later than they would if the Sun were
absent. The tides are then said to lag.

Between full Moon and last quarter the Sun is over

some point S^ between B and A', but the antipodal point S^

is between A and B' ; hence the tide primes.

Between last quarter and new Moon, when the Sun
is at a point 64 between B and A, it is evident in like manner
that the tide lags.

Hence Spring Tides occur at the syzygies (conjunction

and opposition).

Neap Tides occur at the quadratures.

From syzygy to quadrature, the tide primes.

From quadrature to syzygy, the tide lags.

The heights of the spring and neap tides vary with the varying
distances of the Sun and Moon from the Earth. Spring tides are

the highest possible when both the Sun and Moon are in perigee,

while neap tides are the most marked when the Moon is in apogee
but the Sun is in perigee (because the Sun then pulls against the
Moon with the greatest power, as far as the Sun's action is con-

cerned) . Both the sjDring and neap tides, and also the priming and
lagging, are on the whole most marked when the Sun is near perigee,

i.e., about January.
It may be here stated, without proof, that, taking the Sun's and

Moon's tide-raising forces to be in the proportion of 3 to 7, the
maximum interval of priming or lagging is found to be about
61 minutes.
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449. Establishment of the Port.—Bothtlie equilibrium

and canal theories completely fail to represent the actual tides

on the sea, owing to the irregular distribution of land and
water on the Earth, combined with the varying depth of the

ocean. These circumstances render the prediction of tides

by calculation one of the most complicated problems of prac-

tical astronomy, and the computations have to be based largely

on previous observations. In consequence of the barriers

offered to the passage of tidal waves by large continents,

lunar high tide docs not occur either when the Mcon crosses

the \ meridian, as it would on the equilibrium theory, or

when the Moon's hour angle is 90°, as it would on the canal

theory. But this continental retardation causes the high

tide/to occur later than it would on the equilibrium theory,

by>^n interval which is constant for any given place. This

interval, reckoned inlunar hours, is called the Establishment
of the Port for the place considered. Thus the establish-

ment of the port at London Bridge is Ih, 58m., so that lunar

iigh water occurs Ih. 58m. after the Moon's transit, i.e.,

when the Moon's hour angle, reckoned in time, is Ih. 58m.
The same causes affect the solar tide as the lunar, hence

the Sun's hour angle (or the local apparent time) at the solar

bigh tide is also equal to the establishment of the port.

The actual high tide, being due to the Sun and Moon con-

jointly, is earlier or later than the lunar tide by the amount
of priming or lagging. By adding a correction for this to

the establishment of the port, the lunar time of high water
may be found for any phase of the Moon ; and we notice in

particular that at the Moon's four quarters (syzygies and
quadratures), the lunar time of high water is equal to the

establishment of the port. And, knowing the lunar time of

high water, the corresponding mean time can be found, for

(mean solar time)— (lunar time)

= (mean ©'s hour angle)— ( ([ 's hour angle)

=
( ^ 's E.A.) -(mean O's R.A.)

[since R.A. and hour angle are measured in opposite directions].

^N'ow the Moon's E.A. is given in the Nautical Almanack
for every hour of every day in the year. Also the mean Sun's

B.A. at noon is the sidereal time of mean noon, and is give
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in the Nautical Almanack. Hence the mean Sun's E.A.
[which = (sidereal time) — (mean time)] is easily found for

any intermediate time.

Hence the mean time of high water can be readily found.

The establishments of different ports, and the times of high
wator at London Bridge, are given in the !N"autical Almanack.

*450. If only a very rough calculation is required, we may proceed
as in §§ 35, 40. We assume the Moon's R.A. to increase uniformly

;

we shall then have
(d's R.A.)-(0's R.A.) = (([ 's elongation) ;

(solar time) = (lunar time) + ( <I 's elongat on).

Knowing the Moon's age, its elongation may be found, as in § 40,
and this must be converted into time, at the rate of Ih. to 15°. We
then have (time of high water)

= (establishment) + (amount of lag.) + ( C 's elongation in time)

Example.—To find, roughly, the time of h'gh water at the Moon's
first quarter, at London Bridge.

Here there is no priming or lagging. Hence the lunar time, or

d 's hour angle at high water, is equal to the establishment, or Ih.

58m. Also the Moon's elongation is 90°. Hence the Sun's hour
angle, in time, = Ih. 58m. + 6h., and high water occurs about 7h. 58m.

*451. Tidal Constants.—The excess of the establishment of the
port at any place, over that at London Bridge, expressed in mean
time, is sometimes called the Tidal Constant of that place.

If we assume the amount of priming or lagging to be the same
at both places, the tidal constant is the difference between the times
of high water at London Bridge and the given place. Hence,
knowing the tidal constant and the time of high water at London
Bridge, the time at any other place can be found.

Tables of tidal constants, and of the heights of the spring and neap
tides at different places, are given in WhitaJcer's Almanack.

Example.—To find the times of high water at Cardiff and Ports-
mouth on January 25, 1892, the tide intervals from London Bridge
being +4h. 58m. and — 2h. 17m. From the Almanack we find

times of high water at London Bridge are

Jan. 24. Jan. 25.

9h. 15m. aft. 9h. 53m. morn., lOh. 31m. aft.

Add 4h. 58m. 4h. 58m. 4h. 58m.

.*. Times at Cardiff are
(Jan. 25) 2h.l3m.morn. 2h. 51m. aft.

Again, subtract from first line 2h. 17m. 2h. 17ni.

.*. times at Portsmouth are (Jan. 25) 7h. 36m. morn., 8h. 14m. aft.
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452. The Masses of the Sun and Moon can be com.
pared by observing the relative heights of the solar and lunar
tide, the relative distances of the Sun and Moon being known.
Or, if the ratio of the masses be supposed known, the dis-

tances could be compared by this method. In this manner
IN'ewton (a.t). 1687) found the masses of the Moon and Earth
to be in the proportion of 1 : 40 nearly. D. Bernouilli

(1738) found 1 ; 70, and Lubbock (1862) found 1 : 67-3.

The two last make the Moon's mass a little too great. Newton
makes it double what it ought to be.

K
^^

X
0^
^^

H ^~^^c

—

^^
/

"--^
't^Jli'/^K \] __H__ ^ y^R3

/
Fig. 152.

453. Effects of Tidal Friction. — Retardation of
Earth's Rotation.—Acceleration of Moon's Orbital
Motion.— All liquids possess a certain kind of friction,

known as "viscosity," which tends to resist their motion
when they are changing their form, and to convert part of

their kinetic energy into heat. Owing to this friction between
the Earth and the oceans, the Earth, in its diurnal rotation,

tends to carry the tidal wave round slightly in front of the

point underneath, the Moon, taking the positions of high water
forward from the line -ff"' 6' Jff to ^'C'^. The Moon, on the

contrary, tends to draw the water back from A^ A', the dis-

turbing forces AB", A'H' forming a couple, which is resisted

only by the Earth's friction. Hence the ocean exerts an
equal frictional couple on the Earth, and this couple tends to

diminish the angular velocity of the Earth's diurnal rotation,

and thus increase its period.

Therefore tidalfriction tetids to gradually lengthen the day.
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But if the Moon exerts a couple on the Earth, tending to

retard it, the Earth must exert an equal and opposite couple

on the Moon, tending to accelerate it. That it really does so

is manifest from Eig. 152. The portion of the ocean heaped
up at^, being nearer the Moon, exerts a greater attraction than
that at A', in addition to which the angle CMA is very

slightly greater than CMA'. Hence the resultant of the

attractions of equal masses of water at A and A' acts on 31
in a direction slightly in front of MC, and tends to pull the

Moon forward. This tends to increase the Moon's areal

velocity. (Compare § 413.) Since the areal velocity of a

hody revolving in a circle varies as the square root of the

radius (§ 411, Cor.), the Moon's distance must be gradually

increased by this means, and hence also its periodic time.*'

Therefore tidal friction tends to increase the Moon''s distance

and to lengthen the month.

Still the final effect of tidal friction must be to equalize

the lengths of the day and lunar month. The angular

velocities of the Earth and Moon both decrease, but the

effect of the couple, in producing retardation, is far more
considerable on the Earth than on the Moon,

The student who has not read Rigid Dynamics may illustrate this

statement by the comparative ease with which a small top can be
spun with the fingers, and the great difficulty of imparting an equal

angular velocity to the same body by whirling it round in a circle

at the end of a string of considerable length. The top represents

the Earth, and the body on the long string the Moon.
In Rigid Dynamics it is shoAvn that w^hen a system of bodies are

revolving under their mutual reactions, their angular momentum, or

moment of moinentum about their centre of mass, remains constant.

Hence the decrease in the Earth's angular momentum is equal to

the increase in that of the Moon. Now the angular momentum
of a particle revolving in an orbit is twice the product of its mass
into its areal velocity, and this is also approximately true of the

Moon. Hence, since the Moon's distance from the common centre

of mass is far greater (about sixty times as great) than the distance

of any point on the Earth from its axis of rotation, it is evident

that the same change in angular momentum produces far more effect

on the angular velocity of the Earth than on that of the Moon.

* This increase of the distance more than counterbalances the

tendency to increase the Moon's actual velocity. For the actual

velocity is inversely proportional to the square root of the distance

(§ 409), and therefore diminishes as the distance increases.

Similarly, the angular velocity is decreased.



390 ASTRONOMY.

It thus appears that, after the lapse of probably many
millions of years, tidal friction will equalize the periods of

rotation of the Earth and Moon, and the day and month will be

of equal length, each being probably about 1,400 hours long.

The Earth will then always turn the same face towards the

Moon, just as the Moon now does towards the Earth ; hence

there will be no lunar tides, and the retardation due to lunar

tidal friction will no longer exist.

The solar tides will, however, still continue to exist, pro-

vided that there is any water left on the Earth. The effect

of solar tidal friction will be to retard the Earth's rotation,

thus further lengthening the day ; and this again will retard

the Moon's orbital motion, and diminish its areal velocity.

The Moon will, therefore, approach the Earth, and will

ultimately fall into the Earth ; and finally, the Earth will

always turn the same face towards the Sun, so that there

will always be day over one hemisphere and night over the

other.

This theory of the probable future history of the Earth is

due to Professor Gr. H. Darwin. It is certain that the effect

of tidal friction on the Earth's rotation must be very small

;

hence a very long period must necessarily elapse before any
perceptible increase in the length of the day can be detected.

The records of history afford no data sufiiciently accurate to

furnish conclusive evidence of such a lengthening, but there

are some grounds for believing that the sidereal day is in-

creasing in length by about "006 of a second in 1,000 years.

Moreover, the Earth is gradually cooling, and consequently

is shrinking ; and this shrinkage, by bringing the particles of

the Earth nearer to the axis, causes an increase of the angular

velocity of rotation.* It is quite possible that an increase of

this nature is at the present time either wholly or partially

counteracting the retardation due to tidal friction.

* For, according to the principles of Rigid Dynamics, the angular

momentum of the Earth = (its angular velocity) x (its moment of

inertia). And if the angular momentum remains constant, and the

moment of inertia decreases through shrinkage, the angular velocity

must increase.
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454. The Moon's Porm and Rotation.—The theory of

tidal friction affords a simple explanation of how it is that the

^loon always turns the same face to the Earth. Remember-
ing that the Earth's mass is 81 times the Moon's, but that its

radius is about four times as great, the Earth's tide-raising

force at a point on the Moon would be about 81/4, or over

twenty times as great as the Moon's on the Earth. Although
there are now no oceans on the Moon, still we have some
evidence that water may once have existed on its surface.

Furthermore, the large volcanic craters with which its sur-

face is dotted prove that the Moon was at one time filled

with molten lava, and that it Avas probably wholly in a liquid

or viscous state at an earlier period of its historj-. At that

time the huge tides on the Moon, ever following the Eartli,

must, by their friction, have gradually equalized the Moon's
period of rotation with its period of revolution about the

Earth, in just the same way as if the Moon were surrounded

by a friction belt attached to the Earth. This continued till

the Moon always turned the same face to the Earth.

If the Moon was then not quite solid, the Earth's tide-

raising force, which had then become constant, must have
drawn it out into the form demanded by the equilibrium

theory, namely, to a first approximation, a prolate spheroid,

with its longest diameter pointed towards the Earth.

It may easily be seen, from the expressions in § 440, that the

tide-raising force of a body is slightly greater at the point

just under it than at the opposite point (when we do not

only consider approximate values). Hence the Moon is not

quite spheroidal, but is more drawn out on the side towards
the Earth than on the remote side. Its foim is, therefore,

that of an egg^ the small end being towards the Earth. This

result of theory cannot, of course, be confirmed by direct

observation, the remote side being invisible ; but Hansen, by
the theory of perturbations, has shown that the Moon's
centre of mass is further from the Earth than its centre of

figure, thus furnishing independent evidence in favour of

the theory.
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*455. Application to Solar System.—Since the Sun's
tide-raising force on different planets varies inversely as the

cube of their distance, the solar tides are far greater on the

nearer planets than on those more remote. It is, therefore,

quite natural to suppose that the effects of tidal friction may
have produced such a great retardation in the rotations of

Mercury, and possibly also Venus, that one or both of these

bodies already turn the same face towards the Sun, while the

Earth, and the remoter planets, must necessarily take a much
longer time to undergo the necessary retardation, and it

would be very unnatural to expect ]S"eptune, for example,

always to turn the same face to the Sun. Thus Professor

Schiaparelli's recent researches on the rotations of Mercury
and Yenus are in support of the theory of tidal friction.

Section III.

—

Precession and Nutation.

456. In § 141 we stated that the plane of the Earth's

equator is not fixed in space, but that its intersections with
the ecliptic have a slow retrograde motion. This phenome-
non, which is known as Precession, is due to the fact that the

Earth is not quite spherical, and that, in consequence of its

spheroidal form, the Sun's and Moon's attractions exert a dis-

turbing couple on it.

457. The Sun's and Moon's Disturbing Couples
on the Earth.

Let the plane of the paper in Eig. 153 contain the Earth's

polar axis PF\ and the Moon's centre if, say at the time

when the Moon's south declination is greatest.

Inside the Earth inscribe a sphere FAP'A', touching its

surface at the poles. Then we may (for the sake of illustra-

tion) regard the protuberant portion of the Earth outside this

sphere as a kind of tide firmly fixed to the Earth, and the argu-

ments of the last section (§453) show that the variations in the

Moon's attraction at different points give rise to a distribution

of disturbing force identical with the tide-raising force, tending

to draw this protuberant part with its longest diameter QR
pointing towards the Moon. The Moon's attraction on the

matter inside the inscribed sphere passes exactly through the
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Earth's centre C, and produces no such couple ; but the dis-

turbing forces at A^ A\ which are represented by AR, A'II\

form a couple on the protuberant parts, A Q, A'R, tending

to turn the diameter A'A towards CM. The same is true of

the disturbing forces at any other pair of opposite points of

the Earth in the quadrants IICK, H'CK'. Of course there

are couples in the two other quadrants tending in the reverse

direction, but they have less matter to act on, and are there-

fore insufficient to balance the former couples.

Fig, 153.

When the Moon is at the opposite point of its orbit, i.e., at

its greatest N. declination, it is again in the line CH', and

again tends to draw the Earth's equatorial plane towards the

line nil'. Eor any intermediate position of the Moon the

couple is smaller, and it vanishes when the Moon is 07i the

equator ; still, on the whole, the Moon's disturlingforce always

tends to draw the plane of the Earth^s equator towards the plane

of the Moon's orbit.

Similarly, the Sun's disturling force always tends to draw
the plane of the EartNs equator towarj^s the ecliptic.

Since the Moon's nodes are rotating (§273), the plane of the

Moon's orbit is not fixed ; but it is inclined to the ecliptic at

a small angle (5°), while the plane of the equator is inclined

to the ecliptic at a much larger angle (23|°). The average

effect of the Moon's disturbing couple is thus to pull the

Earth's equator towards the plane of the ecliptic. This ten-

dency is increased by the Sun's disturbing couple ; and the

two are proportional to the Sun's and Moon's tide-producing

forces, i.e., as 3 : 7 roughly. Eor this reason, the resulting

phenomenon is sometimes called luni-solar precession.
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*458. Effect of the Couple on the Earth's Axis.—
If the Earth were without rotation, the tendency of this

couple would he to hring the plane of the equator into coinci-

dence with the ecliptic, with the result that the equator
would oscillate from side to side of the ecliptic, like a pendu-
lum under gravity. But the rapid diurnal motion of the
Earth entireh' alters the phenomena.

Let CR he a serai-diameter of the Earth, perpendicular to

CP and CM. The precessional couple would, alone, produce a
slow rotation in the direction PQ3I; i.e., about CR. If

now the Earth's rotation be represented in magnitude and
direction by CP, measured along the Earth's axis, this addi-

tional rotation must be represented by a very short length
CR', measured along CR.

PP'

Fig. 154.

Take PP', equal and parallel to CR' ; then, since PP' is

very small, CP' is of almost exactly the same length as CP.
But angular velocities, and momenta about lines which repre-

sent them in magnitude, are compounded by the same law as

forces, velocities, &c. \_cf. § 387 (iii.)] along the same lines of

corresponding magnitudes.

Hence, the resultant axis of rotation is shifted from CP to

CP', in a direction perpendicular to the plane of the acting

couple.

A full explanation of what follows would be impossible

without a close acquaintance with Eigid Dynamics. But it is

evident that a body flattened at the poles will spin more
readily about the line CP than about any other line drawn in

its substance. Hence it is easy to understand that the polar

axis CP is itself deflected towards CP', and thus moves per-

pendicular to the acting couple.
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This motion can be illustrated by that of a rapidly spinning

top, or of a gyroscope, the phenomena of which can readily be
investigated by experiment.

459. Precession of a Spinning To]^.—Experiment 1.

Let a top be set spinning rapidly about its extremity, in the oppo-
site direction to the hands of a watch, as seen from above, the top
being supported at a point on its axis below its centre of gravity.

The weight of the top, acting vertically through the centre of gravity,

tends to upset the top by pulling its axis out of the vertical. But if

the top is spinning sufficiently rapidly, we know that it will not fall,

the only effect of gravity being to make it " reel," i.e., to cause its

axis of rotation to describe a cone about the vertical through the

point of support, revolving slowly in the counter-clockwise direction.

This slow revolution may be called the precession of the top, and
the experiment shows that when a top is acted on by a couple (such
as that due to its weight) tending to pull its axis away from the
vertical, it precesses in the same direction in which it is spinning.

Experiment 2.—Now suppose the top suspended from its upper
extremity, being thus supported above its centre of gravity. The
couple due to the weight and the reaction of the support, now tends
to draw the axis of the top toivards the vertical. In this case the
axis of the top will be found to slowly describe a cone in the opposite

direction ; that is, the top now precesses in the opposite direction to

that in which it is spinning.

Experiment 3.—Suppose the top supported as in Experiment 1.

If we give the top a push away from the vertical, its axis will not
move in this direction, but its processional motion will increase. If

we give a push in the direction of precession, its axis will approach
the vertical. If we push the axis in the direction of the vertical, it

will not move towards the vertical, but its rate of processional motion
will be increased, i.e., the top will acquire an additional increased
processional motion. If we push it in the direction opposite to

that of precession, the axis will begin to move away from the vertical.

In every case the axis of the top moves in a direction perpendicular
to the direction of the force acting on it, and therefore a couple
acting on a very rapidly spinning top produces displacement of the
axis in a plane perpendicular to the plane of the couple.*

[If we push the top by pressing the side of a pencil against its

axis, it thus always moves in the direction in which the axis would
roll along the side of the pencil. Of course the displacement of the
axis is not due to rolling, as may easily be shown by rep:"ating the
same experiment with a gyroscope, this time pushing one of the
hoops carrying the top instead of touching the top itself j here no
such rolling is possible.]

* These experiments may easily be performed by the reader with
any good-sized top.

ASTRON. 2 D
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460. Precession ofthe Earth's Axis.—On tlie celestial

sphere, let P, K be the poles of the equator and ecliptic

respectively. The Sun's disturbing couple and the mean
couple due to the Moon tend to pull the Earth's equator

towards the ecliptic, or to pull the polar axis P towards the

axis of the ecliptic K. Hence the Earth behaves like a top

suspended from above its centre of gravity, and the polar

axis slowly describes a cone about the axis of the ecliptic,

revolving in the opposite direction to that of the Earth's

rotation, i.e.^ in the retrograde direction.* The pole P there-

fore slowly describes a small circle FP^ about K^ the pole of

the ecliptic, with angular radius PK^ equal to the obliquity

of the ecliptic, i.e.^ 23° 27'. As the pole revolves from P to

P' it carries the equator from T Q— to t'Q— -,
thus carry-

ing the equinoctial points T and £1: slowly backwards along

the ecliptic. The average angle T T ', or PZP'f , described in

a year, is 50-2", and P therefore performs a complete revolu-

tion about iT in 25,800 years (§ 141).

* See also Fig. 154. If X be pole of ecliptic (CS" nearly perpen-
dicular to Clf) it is evident that as P travels towards P' it movea
in the retrograde direction about K.

t Pr andE'T are each 90°; .*. T is pole of arc ZP; .'. L tKP is

a right angle. Similarly, T 'KP' is a right angle

;

.-. LPKF' = Z rKr' = arc T T',.

since T T '^ is a great circle^ whose pole is K.
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The position of the ecliptic is not affected by precession.

Hence the celestial latitude xK of any star x remains constant,

and its celestial longitude TS increases hy the amount of pre-

cession T T', that is, at the rate of 50-1" per year.

A star's declination and right ascension are, however, con-

tinually changing. This change is, of course, due to the

motion of the equator, and not of the star. Thus, as -P moves
to F', the J^.P.D. of the star x decreases from Fx to F'x, and
its R.A. changes from tFx to t'F'x. (The circles

TF, x'F\ xF, xF' are not represented, in order not to com-
plicate the figure unnecessarily. The reader should draw a

figure, inserting them.)

The declinations of some stars are increasing, of others

decreasing.

461. To apply the Corrections for Precession.—
The changes in the decl. and E.A. of a star in one year are

always small, except in the case of the Pole Star, which is

so near the pole that a slight displacement of the pole pro-

duces a great change in the E.A. With this exception, the

rates of change of the decl. and R.A. of a star remain sensibly

constant for a considerable period. Hence, if the coordi-

nates are observed on any given date, and their rates of

variation are known, their values at any other date may be

found by adding or subtracting corrections obtained by mul-
tiplying these rates of variation by the elapsed time.

The rates of variation may be regarded as constant so long

as the interval of time is small compared with the period of

rotation of the pole. They are therefore sensibly uniform for

several years.

The most convenient plan, in correcting for precession, is to

calculate the right ascensions and declinations of all stars for

the same date or e]poch.

For this pui^ose, the time of the vernal equinox in the year

1900 is now frequently chosen as the standard epoch of refer-

ence. When the R.A. and decl. of a star are known, their

rates of variation can be calculated by Spherical Trigonometry
in terms of the known rate of precession, and the correction

can then be applied.
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It would, of course, be possible to proceed somewhat differ-

ently, namely, from the decl. and R.A. to find the star's lat.

and long. The long, could then be increased by the amount
of the precession, namely, 50-2" x (the number of years

elapsed) ; and from the new lat. and long, the new decl. and
R.A. could be found ; but the calculations would be longer.

For the pui-pose of facilitating observations of time, latitude

and longitude, and instrumental errors, the declinations and
right ascensions of certain bright stars are calculated at

intervals of ten days in the Nautical Almanack ; these stars

are the cloch stars of § 54.

The effects of aberration, as well as of precession and nuta-

tion, are taken into account, the tabulated coordinates being

those of the apparent and not the true positions of the star.

Such stars can therefore be used to determine clock error and
other errors, without applying any further correction.

462. Various Effects of Precession.

Since the R.A. and decl. of a star depend only on the
relative positions of the star and equator, their variations due
to precession are just the same as they would be if the equator

and ecliptic were fixed, and the stars had a direct motion of

rotation, of 50-2" per annum, about the pole of the ecliptic.

If we make this supposition, the stars will describe circles

about iTin a period of 25,800 years.

(i.) If a star's distance ^x from the pole of the ecliptic is

less than the obliquity «', or its latitude (I) greater than
90° — «, it will describe a circle ax^a'se^ (^ig- 156), of radius

90°— I, not enclosing the pole P, and its greatest and least

N.P.D. will be

Fa' = t+ (90°-Z), Pa = «-(90°-Z).

Also the star's R.A. will fluctuate between the values

TPxi and tPx^- Now T is the pole of PK; hence JTPr
is a right angle, and tPJ^= 270°; therefore the maximum
and minimum R.A. are 270° +JS^Px^, and 270°— JrP;ri.
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(ii.) If, on the other hand, the star's latitude is <90''— t,

it will describe a circle h^h\ enclosing the pole P. Its

greatest and least N.P.D. will be

Ph' = (90° - Z) + i, Ph = (90°- /) - i.

The star's E.A. will continually increase from 0° to 360°.

In either case the star's N.P.D. will increase as its longitude

increases from 90° (at a or h) to 270° (at a or h'), and will

decrease over the other half of the path.

The Pole Star will, after a time, move away from the pole,

and its place will be then occupied in succession by other

stars whose latitude is very nearly = 90°— « = 66° 33'. If

/, L be the latitude and longitude of such a star, it will be
nearest the pole in an interval of (90°— Z)-f- 50-2" years, and
its N.P.D. will then be (90°-Z)*,«.

That precession has shifted the equinoctial points from the

constellations Aries and Libra, into Pisces and Virgo, has

already been mentioned. Since there are twelve signs of the

zodiac, the equinoctial points shift from one " sign" into the

next in 25,800/12 years, i.e., about 2,150 years.
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463. Effects on the Climate of the Earth's Hemi-
spheres.—We have seen (§ 132) that the fact of the Earth
being in perihelion near the winter solstices renders the
climate of the Earth's northern hemisphere more equable, but
makes the seasons more marked in southern hemisphere.

Owing, however, to precession, combined with the progres-

sive motion of the apse line (§ 153), the reverse will be the

.180X60X60 mc^c rrv • 4.-U
case m , or 10,545 years, ihe summer in the

50-22 + 11-25' '
^

northern hemisphere will then be hotter, but shorter, and the

winter colder and longer. On the whole, the climate will be
colder, as the Earth's radiation will be more rapid during the

heat of summer, and therefore a larger proportion of the heat

received from the Sun will be lost before the winter.

In a recent paper. Sir Robert Ball has shown that the ice

ages, of which we have geological evidence, can probably be
accounted for in this manner. The eccentricity of the Earth's

orbit is not constant, but is changing very slowly, and is

decreasing at the present time. When the orbit had its

greatest eccentricity and the winter solstice coincided with
aphelion, the autumn and winter were 199 days long, spring

and summer being only 166 days long. At this time the

climate of the northern hemisphere must have been so exceed-

ingly cold that the whole of northern Europe, including

Germany and Switzerland, was ice-bound. When aphelion

coincided with the summer solstice a similar effect took place

in the southern hemisphere, but the northern hemisphere was
warmer and more genial than it is now, spring and summer
being 199 days long, and autumn and winter only 166 days

long. Thus, at the time of greatest eccentricity there must
have been long ages of arctic climate, oscillating from one

hemisphere to the other and back in a period of 10,500 years,

alternating with more equable, and, perhaps, almost tropical

climates.

464. Nutation of the Earth's Axis.—In treating of

precession, we have supposed the Earth's poles to describe

email circles uniformly about the poles of the ecliptic. This
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they would do if tlie Sun's and Moon's disturbing couples on
the Earth were always constant in magnitude, and always
tended to pull the Earth's poles directly towards the poles of

the ecliptic. But the couples, so far from being constant,

are subject to periodic variations, in consequence of which
the Earth's poles really describe a wavy curve (shown in

Eig. 157), threading alternately in and out of the small
circle which would be described under precession alone if the
couple were constant. This phenomenon is called ITutatiou,
because it causes the Earth's poles to nod to and from the
pole of the ecliptic.

iNutation is really compounded of several independent

periodic motions of the Earth's axis; the most important of

these is known as Lunar Ifutatiou, and has for its period

the time of a sidereal revolution of the Moon's nodes, i.e.^

about 18 years 220 days. The effect of lunar nutation may
be represented by imagining the pole Pto revolve in a small

ellipse about its mean position ja as centre, in the above period,

in the retrograde direction, while p revolves about K^ the

pole of the ecliptic, with the uniform angular velocity of

precession of 50-2" per annum. The major and minor axes

of the little ellipse are along and perpendicular to Kp re-

spectively, their semi-lengths being pa = 9" and ph = 6-8"

respectively. The angle ^:>J5rj = hp/sin^p (Sph. Geom. 17)
= 6-8"cosec 23° 27' = 17-1" nearly.
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465. General Effects of Lunar Nutation.—In con-

sequence of lunar nutation, the obliquity of the ecliptic is

subject to periodic variations. For this obliquity is equal

to the arc KP, and as P revolves about its mean position

from one end to the other of the major axis of the little

ellipse, the arc KP becomes alternately greater and less than

its mean value Kp, by 9". Thus the greatest and least values

of the obliquity of the ecliptic differ by 18", and the obliquity

fluctuates between the values 23° 27' 20" and 23° 27' 2" once

in about 18f years.

Fig. 158.

Again, when the pole is at an extremity of the minor axis

5, it has regreded further than its mean position p by the

angle pKh, which we have seen is about 17-1". Hence, also,

the first point of Aries has regreded 17-1" further than it

would have gone had its motion boon uniform. Similarly, at

V it has regreded 17-1" less than it would have done if

moving uniformly. Hence the first point of Aries oscillates

to and fro about its mean position through an arc of 34-2" in

the period of 18| years, while its mean position moves through
an angle 18f x 50-2", or about 15' 37".

The angular distance between the true and mean positions

of the first point of Aries is called the Equation of the

Equinoxes. It is, of course, equal to the angle jO-ffP.

Mutation does not affect the position of the ecliptic ; hence
the latitudes of stars arc unaltered by it. Their apparent

longitudes are,, however, increased by the equation of the

equinoxes. Both this cause and the varying obliquity of

the ecliptic produce variations in a star's R.A. and decl.
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466. Discovery of Nutation.—J^utation was discovered

by Bradley soon after his discovery of aberration, while con-

tinuing his observations on the star 7 Lraconis and on a small

star in the constellation Camelopardus, by its effect on the

declinations of these stars. The peculiarity which led him
to separate nutation from aberration was their difference of

period. The period of the former phenomenon is about 19

years, while that of the aberration displacement is only a

year. Had the observed variations in declination been due
to aberration alone, the declination would always have had
the same apparent value at the same time of year, but such

was not the case.

Newton had, sixty years previously (1687), proved the

existence of nutation from theory, but had supposed that its

effects would be inappreciable.

467. To correct for Nutation, the coordinates of a star

are always referred to the mean position of the ecliptic, i.e.,

the position which the ecliptic would occupy if its pole were
at p, the centre of the little ellipse. Hence, since the

apparent decl. and II. A. of a star x are measured by 90°— P^r

andrP^ (= 21()° + KPx\ the corrected decl. and E.A. are

90°—j^o; and 270°+ /i>.r. If the star's position is specified

by its celestial latitude and longitude, the only correction

required is to increase the longitude by the equation of the

equinoxes.

*468. Bessel's Day Numbers.—If the decHnations and right ascen-
sion of stars have been tabulated for a certain date, their apparent
values for any other date, as affected by precession, nutation, and
aberration, can be found by adding certain small coirections to the
tabulated values, and it is found that these may be put into the
t'^i'iii Change of R.A. = Aa + Bh-\- Cc + Dd,

Change of decl. = Aa' + Bh' + Cc' + Dd',

where A, B, C, D are constants, whose values depend only on the
date, and are the same for all stars ; while a, b, c, d, a', h', c', d'

depend only on the coordinates of the star, being always constant for
the same star, and independent of the time of observation.

The four quantities A, B, G, D are called BesseVs Day Numbers,
and their logai'ithms are given in the Nautical Almanack for every
day of the year. The logarithms of the eight constants a, b, c, d,

a', b', c', d', have been tabulated for many thousands of stars in the
star catalogues of the Royal Astronomical Society.
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469. Physical Cause of Nutation.—If the Moon were
to move exactly in the ecliptic, the average couples exerted

by the Moon as well as the Sun would both tend to pull the

Earth's pole directly towards K^ the pole of the ecliptic.

But the Moon's orbit is inclined to the ecliptic at an angle

of 5° ; hence, if L be its pole, KL = 5°, and the Moon's
average disturbing couple tends to pull the pole P towards
L instead of K. When we consider the Sun's action also,

the resultant of the two couples tends to pull the pole towards
a point IS which is intermediate between K and Z, but
nearer to L (because the Moon's disturbing couple is about

2\ times the Sun's). Hence the pole P moves off in a direc-

tion perpendicular to iZP, and not to KP. In consequence

of the rotation of the Moon's nodes, Z, and therefore also II

^

revolves in a small circle about P in the period of 18| years

(see rig. 159).

Let Zj, Zg, Zg, Z4, Zg be the positions of Z, and Pj, Pg, P3,

P4, P5 the positions of P, when the angle FKL is 0°, 90°,

180°, 270°, 3G0° respectively, B^, E^ the positions of jff cor-

responding to Zg, Z4. Then at P^ and P3 the couple is

directed towards K^ and therefore P is then moving perpen-

dicular to KF. At P2 the couple is directed towards Z?,, and
the pole Pgmoves perpendicularly to ZTgPg, thuspassingfrom the
inside to the outside of the small circle described by its mean
position. Similarly, at P4 the pole, by moving perpendicularly

to H^Pi^^ passes back from the outside to tlie inside of the

small circle which it would describe if the couple were
always directed towards K. Thus the wavy form of the

curve described by P is accounted for. And since the whole

space P^KPr, or L^KLr,^ traversed in a revolution of Z, is very

small, the period of oscillation is almost exactly that of

revolution of the Moon's nodes.

Again, the Moon's couple depends on the angular distance

PL, and is greater the greater this distance (as may easily be

seen by § 457). Hence the resultant couple, and therefore

also the precessional motion, is least at P^ and greatest at P3.

This accounts for the variable rate of motion of P, which
gives rise to the equation of the equinoxes.
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* 470. Solar and Monthly Nutations.—The variations in the inten-

sity of tlie Sun's and Moon's disturbing couples during their orbital

I'evolutions give rise to two other kinds of nutation. Let us first

consider the variations in the Sun's disturbing couple, which pro-

duce Solar Nutation. It appears from § 457, that the couple vanishes
when the Sun is on the equator, and that it is greater the greater
the Sun's declination. Also it is readily evident from Fig. 153 that
the couple in general acts in a plane through the Sun and the
Earth's poles, tending to turn the poles more nearly perpendicular
to the direction of the Sun. This shows that the couple is not
really directed towards the pole of the ecliptic (though this is its

average direction for the year) except at the solstices (Fig. 160).

Now at the vernal equinox, when the Sun is at T , the couple
vanishes, and therefore the Earth's tendency to precession, due to

the Sun, vanishes. Between the vernal equinox and the summer
solstice, when the Sun is at Sj, the couple is along 8iP away from
Si, and this tends to mnke the pole precess along PG' perpendicu-
larly to SiP. At the summer solstice the couple along CP is a
maximum, and tends to produce precession along PG perpendicular
to KP. At 8-2 the couple along 82P tends to make the pole precess
in the direction PG". At the autumnal equinox, zO=, the couple, and
therefore the velocity of solar precession, vanishes. At Ssthe Sun's
declination is negative, and the couple tends to draw P towards S3

;

hence the Earth again tends to precess along PG'. At the winter
solstice the direction of precession is again along PG, and the pre-

cessional velocity again a maximum. Finally, at S4 the direction

of precession is again along PG''.
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Hence the variations in the Sun's declination cause the pole to

thread its way in and out of the circle it would describe under
uniform precession once every six months, and to cause the velocity

of revolution about K to fluctuate in the same period. This gives
rise to the nutation known as Solar Nutation, whose period is half a
tropical year. In the case of the Moon the corresponding
phenomenon is known as Monthly Nutation, and its period is half

a month ; the explanation is exactly the same.

The variations in the obliquity of the ecliptic due to these two
causes are small, because, owing to the comparatively small period in

which they recur, the pole has not time to oscillate to and from K
to any great extent. Moreover, the couple, and therefore the rate of

motion of P, decreases as the inclination of PG' to PG increases.

When the Sun is at T or £ii the displacement, if it existed, would be
?ilong PK, in the most advantageous direction for producing nutation,

but at this instant the couple vanishes.

The solar nutation only displaces the pole about 1*2" to or from
K, and the displacement due to monthly nutation is imperceptible.
The effects on the equation of the equinoxes are more apparent.
Under the Sun's action alone, the pole would come to rest twice a
year, viz., at the equinoxes, and under the Moon's action its rate of

motion would vanish twice a month, viz., when the Moon crossed
the equator. At all other times the couples tend to produce retro'

grade—never direct—motion of the pole about K. Hence the pre-

cessional motion can never vanish unless the Sun and Moon should
happen to cross the equator simultaneously.

Section IY.—Lunar and Planetary Feriurhatt'ons.

471. In consequence of the universality of gravitation,

every body in the solar system has its motion more or less

disturbed by the attraction of every other body. Kepler's

Laws (with the modification of the Third Law given in § 421)
would only be strictly true if each planet were attracted

solely by the Sun, and each satellite described its relative

orbit solely under the attraction of its primary. Hence the
fact that these laws very nearly agree with the results of

observation shows that the mutual attractions of the planets

are small com])ared with that which the Sun exerts on each
of them, and that, in the orbital motion of a satellite, by far

the greater part of the relative acceleration' is due to the

attraction of the primary.
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472. Lunar Perturbations.—AVe have seen, in Section

I., that the Moon's motion consists of two component parts, a
monthly orbital motion relative to the Earth—or, more strictly,

relative to the centre of mass of the Earth and Moon—and
the annual orbital motion of this centre of mass in an ellipse

about the Sun. If the acceleration of the Sun's attraction

were the same in magnitude and direction at the Moon as at

the Earth, it would be exactly the acceleration required to

produce the latter component, and the relative orbit about
the Earth would be determined by the Earth's attraction

alone. This is very nearly the case, owing to the great dis-

tance of the Sun. But the small differences of the
accelerations caused by the Sun's attraction on the Earth and
Moon tend to modify the relative motion of these two bodies,

by giving rise to perturbations (§ 272). The relative

accelerations thus produced may be represented by a distri-

bution of disturhing force due to the Sun, just in the same
way that the relative accelerations of the oceans, which cause
the tides, are determined by distributions of disturbing force

due to the Sun and Moon. And since the Sun's distance is

nearly 400 times the Moon's, the expressions for the dis-

turbing force, corresponding to those investigated in §441,
are sufficiently approximate to account for the more impor-
tant lunar perturbations.

Pig. 161.

Let S, U, M denote the centres of the Sun, Earth, and
Moon. DropMK perpendicular on US, and on UX produced
take jOr= 2FX. Then, if S denote the mass and r the dis-

tance of the Sun, the Sun's disturbing force produces at M a
relative acceleration along MH of magnitude kS . MH/r^,
its components being k.8. MK/r^ alongMK and 2k. S . EKJr^
parallel to EK.

This force tends to accelerate the Moon towards the Earth
at quadrature (M^), and awmj from the Earth at conjunction
and opposition {M^, M^). At any other position it accelerates
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the Moon towards a point (.R^) in the line US, and thus
makes the Moon tend to approach the Sun, if its elongation

{M^JES) is less than 90° ; but it accelerates the Moon
towards a point (JI:^) away from the Sun if its angle of

elongation from the Sun be obtuse.

473. The Rotation of the Moon's Nodes.—Let CL
represent the ecliptic, iY^J/jiVY the great circle which the

Moon would appear to describe on the celestial sphere if there

were no disturbing force acting upon it, and let JI, between
iVj and iV/on the ecliptic, represent either the Sun's position

on the celestial sphere or that of the point antipodal to it.

Then the reasoning of the last paragraph shows that the dis-

turbing force acts in the plane UEM^, and therefore has a

component at M^ directed along the tangent to the great

circle M,S.

Now let us suppose that the Moon is revolving under the
Earth's attraction alone, but that on arriving at M^ it is

acted on by a sudden impulse or blow directed towards H.
Clearly the effect of such an impulse is to bend the direction

of motion inward, from M^N^ to J/jiVg'?^^^ the Moon will then
begin to describe a great circle M^N^, which, if produced both
ways, will intercept the ecliptic at points JSf.^, N^ hehind iV„

N^. The inclination of the orbit to the ecliptic will also be

diminished slightly if M^ is within 90° of N^ ; for the exterior

angle MN^S > MN^K, since the sides of the triangle

M^N.N^ are each less than 90°. But when the Moon comes
to Jfj, let another impulse act towards H. This will deflect

the direction of motion from M^K^ to M^JVJ, and the Moon
will now begin to describe the great circle N^IL^N^, whose
nodes iVg, N^ are still further behind their initial positions.

The inclination of the orbit to the ecliptic will, however, be

increased this time.

It is easy to see that the same general effect takes place

when the Moon is acted on by a continuous force^ always^



FUETHEE APPLICATIONS OF THE LAW OF GRAYITATIOI^. 409"

tending towards the ecliptic, instead of a series of impulses.

Such a force continuously deflects the Moon's direction of

motion, and draws the lloon down so that it returns to

the ecliptic more quickly than it would otherwise. Hence
the Moon, after leaving one node, arrives at the next before

is has quite described 180°, and the result is an apparent

retrograde (never direct) motion of the nodes, combined with
periodic, but small, fluctuations in the inclination of the
orbit.

*474. The retrograde motion of the Moon's nodes i3,insomei'espects,

analogous to the precession of the equinoxes, and, although the analogy-

is somewhat imperfect, the former phenomenon gives an illustration

of the way in which the latter is produced. If the Earth had a
string of satellites, like Satux-n'a rings, closely packed together in a
circle in the plane of the equator, the Sun's disturbing force, ever
accelerating them towards the ecliptic, would, as in tbe case of the
Moon, cause a retrograde motion of the points of intersection of all

of their paths with the ecliptic, and this would give the appearance
of a kind of retrograde precession of the plane of the rings. If the
particles, instead of being separate, were united into a solid ring, the
general phenomena would be the same. And it is not unnatural to
expect that what occurs in a simple ring should also occur, to a
greater or less degree, in the case of other bodies that are somewhat
flattened out perpendicularly to their axis of rotation, such as the
Earth, thus accounting for the precession of the equinoxes. (Of
course this is only an illustration, not a rigorous proof; in fact, if

the Earth were quite spherical it would behave very differently.)

Fig. 163.

*475. Perturbations due to Average Value of Radial Disturbing

Force.—Let d be the Moon's distance. Then, when the Moon is in

conjunction or opposition, the Sun's disturbing force acts away from

the Earth, and is of magnitude 2h8d/i^ (Fig. 163). When the

Moon is in quadrature the disturbing force acts toivards the Earth,

but is only half as great. Hence, on the average, the disturbing

force tends to pull the Moon atvay from the Earth.

In consequence, the Moon's average centrifugal force must be

rather less than it would be at the same distance from the Earth if

there were no disturbing force, and the effect of this is to maTce the

month a little longer than it would be otherwise for the same dis-

tance of the Moon.
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Moreover, the disturbing force increases as the Moon's distance
increases, but the Earth's attraction diminishes, being propoi'tional

to the inverse square of the distance ; this has the effect of making
the whole average acceleration along the radius vector decrease onore

rapidly as the distance increases than it would according to the law
of inverse squares. The result of this cause is the progressive

motion of the apse line. It is difficult to explain this in a simple
manner, bi;t the following arguments may give some idea of 'how
the effect takes place. At apogee the Moon's average acceleration

is less, and at perigee it is greater than if it followed the law of

inverse squares and had the same mean value. Hence, when the
Moon's distance is greatest, as at ipogeCjthe Earth does not pull

the Moon back so quickly, and it takes longer to come back to its

least distance, so that it does not reach perigee till it has revolved
through a little more than 180°. Similarly, at perigee the greater
average acceleration to the Earth does not allow the Moon to fly

out again qiiite so quickly, and it does not reach apogee till it has
described rather more than ISQP. Hence, in each case, the line of

apsides moves forward on the whole.

*476. Variation, Evection, Annual Equation, Parallactic
Inequality.—When the Moon is nearer than the Earth to the Sun
(Jf], Fig. 162), the Moon is more attracted than the Earth, and
therefore the disturbing force is towards the Sun (§ 472). Its

effect is, therefore, to accelerate the Moon from last quarter to con-

junction, and to retard it from conjunction to first quarter. When
the Moon is more distant than the Earth from the Sun (M^, Fig. 163),

it is less attracted than the Earth, and therefore the disturbing

force is away from the Sun. Thus the Moon is accelerated from
first quarter to full Moon, and retarded from full Moon to last

quarter.f Hence we see that the Moon's motion in each case

must be swiftest at conjunction and opposition, and slowest at the
quadratures. This phenomenon is known as the Variation.

The force towards the Earth is greatest at the quadratures, and
least at the conjunction and opposition, since at the former the Sun
pulls the Moon towards, and at the latter away from the Earth.

Either cause tends to make the orbit more curved at the quadratures

and less curved at the syzygies. For, if v is the velocity, R the

radius of curvature, then v'jR = normal acceleration. Hence R is

greatest, and the orbit therefore least curved, when v is greatest,

and the normal acceleration is least. The effect of this cause would
be to distort the orbit, if it were a circle, into a slightly oval curve,

which would be most flattened, and therefore narrowest (compare

t These retardations and accelerations are closely analogous to

those of the water in an equatorial canal (§ 445).
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arguments of §§114, 115), at the points towards and opposite the
Sun ; most rounded, and therefore broadest, at the points distant
90° from the Sun.

Of course the Moon's undisturbed orbit is not really circular, but
elliptic, and far more elliptic than the oval into which a circular
orbit would be thus distorted. But a distortion still takes place, and
gives rise to periodical changes in the eccentricity, depending on the
position of the apse line, and known as evection.

The Sun's disturbing force is greatest when the Sun is nearest,
and least when the Sun is furthest. These fluctuations, between
perihelion and aphelion, give rise to another perturbation, called the
annual equation, whose most noticeable effect consists in the con-
sequent variations in the length of the month (§ 475).

If, instead of resorting to a first approximation, we employ more
accurate expressions for the Sun's disturbing force on the Moon, it

is evident that this force is greater when the Moon is near con-
junction than at the corresponding position near opposition

; just

as the disturbing force which produces the tides is really greater
under the Moon than at the opposite point. Hence the Moon is

more disturbed from last quarter through new Moon to first quarter
than from first quarter through full Moon to last quarter. Hence
the time of first quarter is slightly accelerated, and that of last

quarter retarded. This is called the Moon's Parallactic Inequality.
Its amount is proportional to hSd^Jr*, instead of IcSd/r^ (like the
other perturbations). For many reasons this perturbation is of

considerable use in determinations of the Sun's mass and distance.

477. Planetary Perturbations.—The Sun's mass is so

great, compared with the masses of the planets, that the

orbital motion of one planet about the Sun is but slightly

affected by the attraction of any other planet. The mutual
attractions of the planets, and their actions on the Sun, give

rise to small planetary perturbations, which cause each
planet to diverge slowly from its elliptical orbit, besides

accelerating or retarding its motion.

Since the orbital motions of the planets are all usually

referred to the Sun as their common centre or " origin," and
not to the centre of mass of the solar system, the perturba-

tions of one planet, due to a second, depend, not on the actual

acceleration produced by the latter, but on the differences of

the accelerations which it produces on the former planet and on
the Sun.

As in the case of the Moon, the force which produces this

difference of accelerations is called the disturbing force.

ASTEON. 2 E
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*478. Geometrical Construction for tHe Disturbing Force.—The
approximate expressions, investigated in § 472, for the Sun's dis-

turbing force on the Moon, are inapplicable to the disturbing force

of one planet on another, because the distance of the disturbing body
from the Sun is no longer very large, compared with that of the
disturhed body. We must, therefore, adopt the following con-

struction (Fig. 164) :

—

Let P, Q be two planets, of masses If, M' ; 8 the Sun. Then the
planet P produces an acceleration TcMjPQ" on Q along QP, and an
acceleration IcM/PS'^ on 8 along 8P. To find the acceleration of Q,
relative to 8, due to this cause, take a point T on PQ such that
PT : P8 = PS2 : PQl Then the accelerations of 8, Q, due to P, are

TcM . 8P/SP-^ and IcM . TPI8P^ respectively. Hence, by the triangle of

accelerations, the acceleration of Q, relative to 8, is represented in

magnitude and direction by kM . TSl8P^. Therefore the disturbing

force per unit mass on Q, due to P, is parallel to T8, and of magni-
tude kM. T8JSP'\

Fig. 164.

Similarly, if we take a point T on QP such that QT : QS
= QS" : QP2, the disturbing force per unit mass on P, due to Q, is

parallel to T'8, and is of magnitude kM' . T'8/8Q^.

The disturbing force on Q, due to P, and that on P, due to Q, are
not equal and opposite, because they depend on the planets' attrac-

tions on iS, as well as on their mutual attractions.

When PQ = P8, the points Q, T evidently coincide, and the dis-

turbing force on Q is along the radius vector QS. When PQ < PS,
PT>PQ, so that the disturbing force on Q tends to pull Q about 8
(as in Fig. 164) towards P, and when PQ>P3, the disturbing force
tends to push Q about 8 away from P,
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Similarly, when QP = QS, the disturbing force on P is along PS.

When QP < QS it tends to pull P about S towards Q, and when
QP > QS, it tends to push P about S away from Q.

*479. Periodic Perturbations on an Interior Planet.—Let us con-

sider, in the first place, the perturbations produced by one planet

E on another planet V, whose orbit is nearer the Sun ; as, for

example, the perturbations produced by the Earth on Venus, by
Jupiter or Mars on the Earth, or by Neptune on Uranus.

Let A, B be the positions of the planet, relative to E, when in

heliocentric conjunction and opposition respectively ; U, U' points

on the relative orbit such that EU = ETJ' = ES. (These points are

near, but not quite coincident with the positions of greatest elonga-

tion.) Then, if we only consider the component relative acceleration

of V perpendicular to the radius vector VS, this vanishes when the

planet is at TJ or {/', as shown in the last paragraph.

The tangential acceleration also vanishes at A and B. Over the

arc 17 'J. 17 the relative acceleration is towards E, therefore the planet's

orbital velocity is accelerated from U' to A; similarly it is retarded

from A to U.

Again, at a point Fj on the arc UBU', the relative acceleration is

away from the Earth, and this accelerates the planet's orbital

velocity between U and B, and retards it between B and U'.

It follows that V is moving most swiftly at A and B, and most
slowly at U and U'. Hence, if we neglect the eccentricity of the

orbit, we see that the planet, after passing A, will shoot ahead of the

position it would occupy if moving uniformly; thus the disturbing

force displaces the planet forivards during its path from A to near
U. Somewhere near TJ, when the planet is moving with its least

velocity, it begins to lag behind the position it would occupy if

moving uniformly; thus from near U" to P the disturbing force dis-

places the planet hackwards. Similarly, it may be seen that from B
to near TJ' the planet is displaced forwards, and from near TJ' to A
it is displaced bachtvards.
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The principal effect of the component of the disturbing force

along the radius vector, is to cause rotation of the planet's apsides,

as in the case of the Moon. The direction of their rotation depends

on the direction of the force, and is not always direct. The eccen-

tricity of the orbit is also affected by this cause, as in the phenome-
non of lunar evection, and the periodic time is slightly changed.

Owing to the inclination of the planes of the orbits of E, V, the

attraction of E, in general, gives rise to a small component perpen-

dicular to the plane of F's orbit, which is always directed toivards

the plane of E's orbit. This component produces rotation of the line

of nodes, or line of intersection of the planes of the two orbits. This

rotation is always in the retrograde direction, and is to be explained

in exactly the same way as the rotation of the Moon's nodes.

It is thus a remarkable fact that since all the bodies in the solar

system (except the satellites of Uranus and Neptune) rotate in the

direct direction, all the planes of rotation and revolution, and all

their lines of intersection {i.e., the lines of nodes, and the lines of

equinoxes) in the whole solar system, with ihe above exceptions,

have a retrograde motion.

A
Fig. 1C6.

*480. Periodic Perturbations of an Exterior Planet.—The accele-

rations and retardations produced by a planet E on one /, whose
orbit is more remote from the Sun, during the course of a synodic
period, may be investigated in a similar manner to the corre-

sponding perturbations of an interior planet, assuming the orbits to

be nearly circular.

If SJ is less than 28E there are two points If, N on the relative

orbit at which EM = EN = ES. At these points the disturbing
force is purely radial, and it appears, as before, that the planet J is

accelerated from heliocentric conjunction A to M, and from helio-

centric opposition B to N ; retarded from N to A, and from M to B.

If SJ > 2SE, then ES < EA ; hence the attraction of E is greater on
the Sun than on J, and the disturbing force therefore always accele-

rates the planet J towards B. Thus the planet's orbital velocity

increases from A to B, and decreases from B to A, and it is greatest at

B and least at A. Therefore from B io A the planet is displaced in
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advance of its mean position, and from A to B falls behind its mean
position.

The effects of the radial and orthogonal components of the dis-

turbing force in altering the period and causing rotation of the apse
line, and regression of the nodes, can be investigated in the same
way for a superior as for an inferior planet.

*481. Inequalities of Long Period.—If the orbits of the planets

were circular (except for the effects of perturbations), and in the
same plane, their mutual perturbations would be strictly periodic,

and would recur once in every synodic period. Owing, however, to

the inclinations and eccentricities of the orbits, this is not the case.

The mutual attractions of the planets produce small changes in the
eccentricities and inclinations, and even in their periodic times,

which depend on the positions of conjunction and opposition relative

to the lines of nodes and apses. Neglecting the motion of these
latter lines, the perturbations would only be strictly periodic if the
periodic times of two planets were commensurable ; the period of

recurrence being the least common multiple of the periods of the
two planets. But when the periodic times of two planets are nearly
hut U' t quite in the proportion of two small whole numbers, inequali-

ties of long period are produced, whose effects may, in the course
of time, become considerable.

Thus, for example, the periodic times of Jupiter and Saturn are
very nearly but not quite in the proportion of 2 to 5. If the propor-
tionality were exact, then 5 revolutions of Jupiter would take the
same time as 2 revolutions of Saturn; and, since Jupiter would thus
gain three revolutions on Saturn, the interval would contain 3

synodic periods. Thus, after 3 synodic periods had elapsed from
conjunction, another conjunction would occur at exactly the same
place in the two orbits, and the perturbations would be strictly

periodical.

But, in reality, the proportionality of periods is not exact ; the
positions of every third conjunction are very slowly revolving in

the direct direction. They perform a complete revolution in

2,640 years. But there are three points on the orbits at which con-

junctions occur, and these are distant very nearly 120° from ono
another. It follows that when the positions of conjunction havo
revolved through 120", they will again occur at the same points on
the orbits, and the perturbations will again be of the same kind as

initially. The time required for this is one-third the above period,

or 880 years, and consequently Jupiter and Saturn are subject to

long-period inequalities which recur only once in 880 years.

Again, the periodic times of Venus and the Earth are nearly in

the proportion of 8 to 13 ; consequently 5 conjunctions of Venus occur
in almost exactly 8 years, thus giving rise to perturbations having
a period of 8years. But the proportion isnot exact, and, consequently,

there are other mutual perturbations having a very long period.
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One of the most important secular perturbations is the alternate

increase and decrease in the eccentricity of the Earth's orbit. This,

at the present time, is becoming gradually more and more circular,

but in about 24,000 years the eccentricity will be a minimum, and
will then once more begin to increase. The effects of this cause on
the climate of the Earth's two hemispheres have already been
considered (§ 463).

482. Gravitational Methods of Finding the Sun's
Distance.—The Earth's perturbations on Mars and Yenus
furnish a good method of finding the Sun's distance. For
the magnitude of these perturbations depends on the ratio of

the Earth's mass, or rather the sum of the masses of the
Earth and Moon (since both are instrumental in producing
the perturbations), to the Sun's mass. Hence, if S, If, m
denote the masses of the Sun, Earth, and Moon, it is possible,

from observations of these perturbations, to find the ratio of

(ir+m) : S.

But, if r, d be the distances of the Sun and Moon from the

Earth, Tand Yi\yc length of the sidereal lunar month and
year, we have, by Kepler's corrected Third Law,

{M+m) T^ : (S+ Jfl+m) Y' =d':r';
whence the ratio oi r to d is known. If, now, the Moon's
distance d be determined by observation in any of the ways
described in Chapter YIII., or by the gravitational method
of § 423, the Sun's distance r may be immediately found.

This method Avas used by Leverrier in 1872. Erom obser-

vations of certain perturbations of Yenus he found the values
8'853'' and 8*859" for the Sun's parallax, while the rotation

of the apse line of Mars gave the value 8-866".

The perturbations of Encke's comet were used in a similar

way by Yon Asten, in 1876, to find the Sun's parallax, the

value thus obtained being rather greater, viz., 9 •009".

The lunar perturbations also furnish data for determining
the Sun's distance, the principal of these being the parallactic

inequality of the Moon (§ 476). Several computations of the

Sun's parallax have thus been made, the results being 8-6"

by Laplace in 1804, 8-95" by Leverrier in 1858, 8-838" by
Newcomb in 1867. See also § 437 for the determination of

the parallax from the apparent monthly displacement of the

Sun.
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483. Determination of Masses.— The mass of any
planet which is not furnished with a satellite can be deter

mined in terms of the Sun's mass by means of the perturba-
tions it produces on the orbits of other planets. The
amount of these perturbations is always proportional to the
disturbing force, and this again is proportional to the mass
of the disturbing planet. In this manner the mass of Yenus
has been found to be about 1/400,000 of the Sun's mass, and
that of Mercury about 1/5,000,000.

484. The Discovery of Neptune.—The narrative of the

discovery of Neptune is one of the most striking and remark-
able in the annals of theoretical astronomy, and forms a Jetting

conclusion to this chapter.

In 1795, or about 14 years after its discovery, the planet

Uranus was observed to deviate slightly from its predicted

position, the observed longitude becoming slightly greater

than that given by theory. The discrepancy increased till

1822, when Uranus appeared to undergo a retardation, and
to again approach its predicted position. About 1830 the

observed and computed longitudes of the planet were equal,

but the retardation still continued, and by 1845 Uranus had
fallen behind its computed position by nearly 2'.

As early as 1821, Alexis Bouvard pointed out that these

discrepancies indicated the existence of a planet exterior to

Uranus, but the matter remained in abeyance until 1846,

when the late Mr. (afterwards Prof.) Adams, in Cambridge,

and M. Leverrier, in Paris, independently and almost simul-

taneously, undertook the problem of determining the position,

orbit, and mass of an unknown planet which would give rise

to the observed perturbations. Adams was undoubtedly the

first by a few months in performing the computations, but

the actual search for the planet at the observatory of Cam-
bridge was delayed from pressure of other work. Meanwhile
Leverrier sent the results of his calculations to Dr. Galle,

of Berlin, who, within a few hours of receiving them, turned

his telescope towards the place predicted for the planet, and
found it within about 52' of that place. Subsequent exami-

nation of star charts showed that the planet had been pre-

viously observed on several occasions, but had always been
mistaken for a fixed star.
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It will be seen from § 479 that the acceleration of TJranug

up to 1822, and its subsequent retardation, are at once

accounted for by supposing an exterior planet to be in helio-

centric conjunction with the Sun about the year 1822. But
Adams and Leverrier sought for far more accurate details

concerning the planet. At the same time the data afforded

by the observed perturbations of Uranus were insufficient to

determine all the unknown elements of the new planet's

orbit, and therefore the problem admitted of any number of

possible solutions. In other words, any number of different

planets could have produced the observed perturbations.

To render the problem less indeterminate, however, both

astronomers assumed that the disturbing body moved nearly

in the plane of the ecliptic and in a nearly circular orbit,

that its distance and period were connected by Kepler's

Third Law, and that its distance from the Sun followed

Bode's Law. The latter assumption led to considerable

errors, including an erroneous estimation of the planet's

period by Kepler's Third Law. For when Neptune was
observed, its distance was found to be only 30-04 times the

Earth's distance, instead of 38-8 times, as it would have been
according to Bode's Law. Nevertheless, the actual planet

was subsequently found to fully account for all the observed

perturbations of Uranus.

The discovery of Neptune affords most powerful evidence

of the truth of the Law of Gravitation, and so indeed does

the theory of perturbations generally. The fact that the

planetary motions are observed to agree closely with theory,

that computations of astronomical constants (such as the
Sun's and Moon's distances), based upon gravitational methods,
agree so closely with those obtained by other methods, when
possible errors of observation are taken into account, affords

an indisputable proof that the resultant acceleration of any
body in the solar system can always be resolved into com-
ponents directed to the various other bodies, each component
being proportional directly to the mass and inversely to the
square of the distance of the corresponding body. Such a
truth cannot be regarded as a fortuitous coincidence ; it can
only be explained by supposing every body in the universe

to attract every other body in accordance with Newton's Law
of Universal Gravitation.
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EXAMPLES.—XIY.

1. If the Sun's parallax be 8"80", and the Sun's displacement at

first quarter of Moon 652", calculate the mass of the Moon, the

Earth's radius being taken as 3,963 miles.

2. Supposing the Moon's distance to be 60 of the Earth's radii,

and the Sun's distance to be 400 times that of the Moon, while his

mass is 25,600,000 times the Moon's mass, compare the effects of

the Sun and Moon in creating a tide at the equator, in the event of

a total eclipse occurring at the equinox.

3. If the Earth and Moon were only half their present distance

from the Sun, what difference would this make to the tides ? Cal-

culate roughly what the proportion between the Sun's tide-raisng

power and the Moon's would then be, assuming the Moon's distance
from the Earth remained the same as at present.

4. Taking the Moon's mass as -g^,y of the Earth's, and its distance

as 60 times the Earth's radius, show that the Moon's tide-raising

force increases the intensity of gravity by 1/17,280,000 when the
Moon is on the horizon, and that it decreases the intensity of gravity

by 1/8,640,000 when the Moon is in the zenith.

5. Compare the heights of the solar tides on the Earth and on
Mercury, taking the density of Mercury to be twice that of the
Earth, its diameter "38 of the Earth's diameter, and its solar distance
•38 of the Earth's solar distance.

6. Explain how the pushing forward of the Moon by the tidal

wave enlarges the Moon's orbit.

7. Show that, owing to precession, the right ascension of a star

at a greater distance than 23^° from the pole of the ecliptic will

undergo all possible changes, bub that a star at a less distance than
235° will always have a right ascension greater than twelve hours,

8. Prove that for a short time pi-ecession does not alter the decli-

nations of stars whose right ascensions are 6h., or 18h.

9. Exhibit in a diagram the position of the pole star (R.A.
= Ih. 20m., decl. = 88° 40') relative to the poles of the equator and
ecliptic, and hence show that owing to precession its R.A. is increas-
ing rapidly, but that its polar distance is decreasing.

10. Describe the disturbing effects of Neptnne on Uranus for a
short time before and after heliocentric conjunction, pointing oub
when Uranus is displaced in the direct, and when in the retrograde
direction.
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EXAMINATION PAPER.—XIV.

.1. Show that the Moon's orbit is everywhere concave to the Sun.

2. Show that the tide-raising force of a heavenly body is nearly

proportional to its (mass) -r (distance)^

3. How is it that we have tides on opposite sides of the Earth at

once ?

4. Explain the production of the tides on the equilibrium theory.

5. Define the terms spring tide, neap tide, priming and lagging,

establishment of the port, lunar time.

6. What is meant by the expression " Luni- solar Precession" ?

Describe the action of the Sun and of the Moon in causing the

Precession.

7. Give a general description of Precession. Does precession

change the position of (a) the equator, (b) the ecliptic among the

stars ?

8. Describe nutation. "What is the cause of Lunar Nutation?

What is meant by the equation of the equinoxes ?

9. Give a brief account of the discovery of Neptune.

10. Explain how the retrograde motion of the Moon's nodes is

caused bv the Sun's attraction on the Earth and Moon.



NOTE I.

DiagkajVI for South Latitudes.

In order to familiarize the student with astronomical

diagrams drawn under different conditions, we subjoin a figure

showing the principal circles of the celestial sphere of an

observer in South latitude 45° at about 19h. of sidereal time

{QJVUr == 270°+ 15° = 19h.). The figure shows also the

Sun's daily paths at the solstices; also the arcs tR^^Q^,
and Mx^ which measure the H.A. and N. decl. of the star x.

S.Pole

N.POLE

NOTE II.

The Photocheoxograph.

Quite recently photography has been applied to recording
transits, as an alternative for the methods explained in

Chap. II., §§ 49, 50. The image of the observed star is
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projected on a sensitized plate placed in front of the transit

circle, and, owing to the diurnal motion, it moves horuontally

across the plate. The plate is made to oscillate slightly in a

vertical direction, by means of clockwork, say once in a

second, and this motion, combined with the horizontal motion
of the image, causes it to describe a zigzag or wavy streak on
the plate. The star's position at each second is indicated by
the undulations, and the position of these is capable of being

measured with great exactuess.

NOTE III.

ITOTE ON § 104.

It may be proved, by Spherical Trigonometry, that

sin nF = sin xF sin tixF, or sin I = cos d sin nx.P
;

cos^ d cos^ 7ixP = cos^ d— cos^ d sin^ nxP = cos^ d— sin^ I

= eos{d-\-l)cos{d—l);

D"
acceleration t =

15 \/(cos^ d — sin- 1)

D"

15 s/ {':^Q^{d^V)Qm{d-l)]

The same formula is applicable to §§ 135, 190.



APPENDIX.

PROPERTIES OE THE ELLIPSE.

For the benefit of those readers who have not studied Conic

Sections, we subjoin a list of those properties of the ellipse which
are of astronomical importance. The proofs are given in books on
Conic Sections.

APSE

Fig. 1C8.

1. Definition.—A conic section is a curve such that the distance

of every point on it from a certain fixed poixit is proportional to its

perpendicular distance from a certain fixed straight line.

The fixed point is called the foCUS, the fixed line is called the
directrix, and the constant ratio of distances is called the eccen-
tricity.

If this constant ratio or eccentricity is less than unity, the curve
is called an ellipse. In this case the curve assumes the form of a
closed oval, as shown in the figure.

If 8 is the focus, and if from A, P, L, P', A', &c., any points on
the curve, perpendiculars AX, PM, &c., be drawn on the directrix,

and if the eccentricity be e, the definition requires that

8A SP^SL_
PM

e =
AX LK

8P' _ 8A' ^.
P'M' A'X '

and that e is less than unity.

The other conic sections, the parabola and hyperbola, are defined
by the same property, save that in the former e = 1, and in the
latter e > 1 ; but they are of little astronomical importance, except
as representing the paths described by non-periodic comets.
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2. An ellipse has two foci (each focus having a corresponding
directrix), and the sum of the distances of any point from the two
foci is constant.

Thus in Fig 169, 8, Hare the two foci, and the sum SP + PH is

the same for all positions of P on the curve.
From this property an elHpse may easily be drawn. For, let two

small pins be fixed at S and H, and let a loop of string SPH be passed
over them and round a pencil-point P ; then, if the pencil be moved so

as to keep the string tight, its point P will trace out an ellipse.

For SP + PH + HS = constant, and .-. SP + PR = constant.

3. For all positions of P on the ellipse, SP is inversely propor-
tional to 1 + e cos ASP, so that

/SP(l + ecos J.SP) = I = constant,

e being the eccentricity and SA the line through 8 perpendiculajr

to the directrix.

\^^^- ^^"B \

a\ S ff\ c ^ r

9 y

Fig. 169.

4. The line joining the two foci is perpendicular to the di:;ectrices.

The portion of this line (AA'), bounded by the curve, is called the
major axis or axis major. Its middle point C is called the centre,

and the curve is symmetrical about this point.

The line BCB', drawn through the centre perpendicular to ACA'
and terminated by the curve, is called the minor axis or axis minor.
The lengths of the major and minor axes are usually denoted by
2a and 2& respectively.

5. The extremities A, A' of the major axis are called the apses
or apsides. Since, by (2), SP + HP is constant, therefore, taking

P at ^ or A', 8P + HP== SA + HA = SA' + HA'

==^(SA + HA + 8A' + HA') evidentlj

= AA' = 2a.

Taking P at B, 8B + HB = 2a',

.'. SB (evidently) = HB = a =^ CA.
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6. The eccentricity e = CSJOA; .'. CS = e . GA, and

62 = GB' = SF-- CS^ (Euc. I. 47) = a-^a"'e''' = a' (1-e-)

;

SA= CA-CS = a{l-e) and iS4' = C^' + CS = a(l + c).

7. The latus rectum is the chord LSL' drawn through the focus

perpendicular to the major axis AA'. Its length is 21, where
I = a (1— e-). Also I is the constant of (3), for when P coincides

with L, ASP - 90° ; .-. cos ASL = 0, and SL = I. [Fig. 168.]

8. The tangent TTT and normal PGg, at P, bisect respectively

the exterior and interior angles (SPI, SPH) formed by the lines

SP, HP.

9. If the normal meets the major and minor axes in G, g,

PQlPg =- GB' : GA^ {= b- : a-).

10. If ST, drawn perpendicular on the tangent at P, meets HP
produced in I, then evidently SP = IP;

.'. HI== 8P + HP=^ 2a [by (2)].

If HT is the other focal perpendicular on the tangent, it is known

that rectangle ST . HT' = constant = 6-.

11. Relation between the focal radius sf and the focal perpen-
dicular on the tangent st.

Let SP = r, ST = p.

Then cos TIP = cos TSP = pfr.

By Trigonometry,
SH^ = IS' + IH^-2. IS. Iff. cos SIHi

,*. 4aV = 4p^ + 4a-— Spa x p/r
j

. a2(l-e^) ^ 2£_j
p'^ r '

, ,„. h' 2a - 2a-r HP - --

This may also be proved from the similarity of the triangles

SPT, HPT', which gives ST : HT' = SP : HP ;

.-. ST^ : ST . HT' = SPlHP and ST . HT' = 62 (lO)

;

.*. p- : h^ = r : 2a— r.

12. If a circular cone (i.e., either a right or oblique cone on a
circular base) is cut in two by a plane not intersecting its base, the
curve of section is an ellipse. More generally, the form of a circle

represented in perspective, or the oval shadow cast by a spherical
globe or a circular disc on any plane, are ellipses. A circle is a
particular form of ellipse for the case where h = a and .*. e = 0.

13. The area of the ellipse is itab.
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TABLE OF ASTRONOMICAL CONSTAN'TS.

(Approximate values, calculated, when variable, for the Spring
Equinox, A.D. 1900.)

The Celestial Sphere,

Latitude of Londoi? (Greenwich Observatory), 51® 28' 31",

„ Cambridge Observatory, 52° 12' 51".

Cb^iquity of Ecliptic, 23^ 27' 8".

Optical Constants.

Coefficient of Astronomical Eefraction, 57".

Horizontal Eefraction, 33'.

Coefficient of Aberration,
,

20-493".

Velocity of Light in miles per second, 186,330.

„ „ „ metres „ 299,860,000.

Equation of Light, 8m. ISa

Time Constants.

Sidereal Day in mean solar units = 1— l/366|days = 23h. 56m. 4"ls.

Mean Solar Day in sidereal units = 1 + 1/365j days = 24h. 3m. 56"5s.

Year, Tropical, in mean time, 365d. 5h. 48m. 45'51s.

„ Sidereal, „ 365d. 6h. 9m. 8-97».

„ Anomalistic, „ 365d. 6h. 13m. 48-09s.

„ Civil, if the number of the year is not divisible by 4,

or if it be divisible by 100, but not by 400, 365 days.

In other cases, 366 „
Month, Sidereal, 27-321f6d. = 27d. 7h. 43m. ll-4s.

„ Synodic, 29o3059d. = 29d. 12h. 44m. 30s.

Metonic Cycle, 235 Synodic Months = 6939-69d
= 19 tropical years (all but 2 hours).

Period of Rotation of Moon's Nodes (Sidereal), 6793-391d. = 18-60 yr.

„ „ „ (Synodic), 346-644d.
= 346d. 14Jh.

„ „ „ Apsides (Siderpal), 3232-575d. = 8-85 yr.

„ (Synodic), 411-74d.

Saro8 223 Synodic Months = 6585-29d. = 18*0906 yr.

= 18 yr. 10 or 11 days.
= 19 Synodic periods of Moon's Nodes (very nearlyy
= 16 „ „ „ Apsides (nearly).

Equation of Time, Maximum due to Eccentricity, 7m.

„ „ „ Obliquity, 10m.
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The Earth.

Equatorial Eadius, 3963-296 miles.

Polar „ 3949-791 „

Meaa „ 39591 „{22,902 „
360 X 60 = 21,600 geographical miles,

4 X 107 = 40,000,000 metres.

Ellipticity or Compression, 1 -^ 293.

Eccentricity, '0826.

Density (Water = 1), 5-58.

Mass,
^ ^

6067 X lO^nons.
Mean Acceleration of Gravity in ft. per sec. per sec, 32"18.

Ratio of Centrifugal Force to Gravity at Equator, 1 -;• 289.

Eccentricity of its Orbit, I-7-6O.

Annual Progressive Motion of Apse Line, 11'25".

„ Eetrograde Motion of Equinoxes (Precession), 50-22".

Period of Precession, 25,695 years.

„ Nutation, 186 „
Greatest change in Obliquity due to Nutation, 9'23".

Equation of Equinoxes, 15' 37",

The Sun.
Mean Parallax, 8-80",

„ Angular Semi-diameter. 16' 1".

„ Distance in miles, 92,800,000.

Diameter in miles. 866,4^.
„ in Earth's radii. 109.

Density in terms of Earth's, 1
4'

„ (taking water as 1), 1-4.

Mass in terms of Earth's, 324,439.

Period of Axial Rotation, 25d. 5h. 37ra.

The Moon.
Mean Parallax, 57' 2-707".

„ Angular Semi-diameter, 15' 34".

„ Distance in miles. 238,840.

„ „ in Earth's radii. 60-27.

„ „ in terms of Sun's distance, 1/389.

Diameter in miles, 2,162.

„ in terms of Earth's, 3/11.

Density in terms of Earth's, •61.

„ (taking water as 1), 3-4.

Mass, in terms of Earth's, 1/81.

Eccentricity of Orbit, 1/18.
Inclination of Orbit to Ecliptic, 5«8'.

Ecliptic Limits, Lunar, 12° 5' and 9" 30'.

„ Solar, 18° 31' and 15° 21'

Tide-raising force in terms of Sun's, 7/3.

ASTEON. 2f
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Note.—Where only rough values of the astronomical data are

given in the questions, the answers can only be regarded as rough
approximations, not as highly accurate results. It is impossible to

calculate results correctly to a greater number of significant figures

than are given in the data employed, and any extra figures so

calculated will necessarily be incorrect. As the use of working
examples is to learn astronomy rather than arithmetic, it is ad-

visable to supply from memory the rough values of such astronomi-
cal constants as are not given in the questions. These values will

thus be remembered more easily than if the more accurate values
were taken from the tables on pages 426, 427, though reference to

the latter should be made until the student is familiar with them.

I. Examples (p. 33).

1. Only their relative positions are stated; these do not completely

fix them.

2. 6 p.m., 6 a.m.; on the meridian. 8. On September 19.

9. (i.) Early in July ; (ii.) middle of June—the Sun passes it about

June 26.

10. 304° = 20h. 6m. ; at 8h. 13m. p.m.

11. Near tlje S. horizon about 10 p.m. early in October.

12. 38° 27',' 51° 33', 28° 5', or if Sun transits N. of zenith 8° 27',

81° 33', 58° 5'.

I. Examination Papee (p. 34).

*7. 30°. 8. 61° 58' 37", 15° 4' 21". 9. 6h. 43m. 16s. (roughly).

10. The figure should make Capella slightly W. of N., altitude about

15°; a Lyrse a little S.E. of zenith, altitude about 75°;

o Scorpii slightly W. of S., altitude about 12°; o Ursx Majoris

N.W., altitude about 60°.
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II. Examples (p. 61).

6. Direct. 7. Interval = 12 sidereal hours. 9. 2' 29' SSS".

11. 12° 39' 9". 12. I7h. 29ra. 52-42S.

II. Examination Paper (p. 62).

6. Positive. 10. lm.2-52s., +0-7ls.

III. Examples (p. 84).

2. 4,267 ft. •

3. a°N., L°-90°W. and a° S., L° + 90°W., if L° = W. longitude

given place.

5. 13m. 6. 39-8 miles. 7. 3960.

8. 6084 ft. 10. 49' 6" per hour.

Miscellaneous Questions (p. 85).

2. N.P.D. = 85°, hour angle - 30° W.

3. Because declination circle has not been defined.

5. 22h. 40m., 9h. 20m., 14h. Om., 19h. 36m. 10. 52".

III. Examination Paper (p. 86).

1. 24,840 miles, 3,953 miles.

2. 3-285 ft., 6,084 ft., 1-69 ft. per second. 3. 50-7 ft.

5. 3,437,700 fathoms, 6,366,200 metres (roughly), 1,851-851 metres.

9. See § 97, cor.

IV. Examples (p. 113).

5, 45°. 7. Star, 6h. 15m. 26-35s. ; Sun, Oh. 13m. 51-903.

10. 3481 : 3721, or 29 : 31 nearly.

IV. Examination Paper (p. 114).

3. See §§ 130, 151.

8. Oh. 36m. 21-26s. (Note that the clock has a losing rate of

3m. 22 -05s. on sidereal time; it gives solar time approxi-

mately.)

V. Examples (p. 137).

1. Eetrograde. 3. -3-9m. 6. 347 centuries exactly.

7. Star's hour angle = 4h. 11m. 3s., N.P.D. = 53°.

8. October 28, 15h. 39m. 27-32s.

10. 12h. 27m. 13-263. at Louisville = 18h. 9m. 1326 at Greenwich.
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Miscellaneous Questions (p. 138).

3. Eastward. 5. Use Figs. 47, 50. 6. See §439.

7. See §161. 8. llh. 59m. 15-9s. j - Im. 7'43.

9. 366-25 : 36525 or 1465 : 1461.

V. Examination Paper (p. 139).

4. — 10m. ; morning 20m. longer. 5. See § 172.

8. (i.) 7h.l3m. 5s.; (ii.) 7h. 12m. 483. -9. June 26.

10. 1824, 1852, 1880, 1920.

VI. Examples (p. 151).

3. 3,963 miles.

4. From 50° 9' 47" to 49° 59' 55" (refraction at altitude 5° = 9' 47"

by tables).

5. 44° 53' 28". 8. 84° 33'; 377 miles or 327 nautical miles.

YI. Examination Paper (p. 152).

4.462". 7. 44° 58' 5 1". 10. Ih. 12m.

VII. Examples (p. 188).

1. 37° 49'. 2. 51° 44' 26-09".

4. 50° 54' 58-6" or 60° 43' 23-6" according as star transits N. or S.

of zenith.

5. 44° 55', or, if corrected for refraction (c/. Ex. 2, p. 163),

44° 53' 54".

e. 51° 33', 38° 27', 61° 54'. 8. - 10m., i.e., 10m. fast.

9. 12° 30'. 10. Ih.Om. 11. 2° 32'. 12. 27'.

13. See § 237. 18. Lat. = cos- ' ^V = 87° 54' nearly.

VIII. Examples (p. 217).

2. 92,819,000 (see Ex. 2, p. 195).

3. At 6 p.m. ; about same length as Midsummer Sun, i.e., 16^h.

4. See§26i. 5. 8' 48". 6. Use §266.

7. lOd. 4Jh. at noon.

8. Gibbous, bright limb turned slightly below direction of W.
Hour angle = 30°, decl. = 0.

10. (i.) No harvest moon
;

(ii.) Phenomena practically unaltered.
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Ylir. Examination Paper (p. 218).

4. See § 260. 7. 71° 33". 9. When we have a solar eclipse.

IX. Examples (p. 236).

1. 23t°S.

2. Favoui'able if moon passes from N. to S. at ecliptic on March 21.

4. 4m. 38s. 5. Length = (Earth's radius) -^ sin(S-P).

7. 6h. 32m. if month unaltered; or, by § 329, a lunation = about

10 days, and then time — 2h. 10m.

8. 40 Earth's radii = 158,000 miles (roughly).

9. Total Solar. 10. 1°28' (c/. §291).

IX. Examination Paper (p. 237).

e. 850,000, 230,000, and 5,800 miles (roughly).

7. Sec §§ 292, 295-297. 9. No.

10. In Fig. 93 takeM on xm produced, such that sinxM = xmj{p — P).

X. Examples (p. 265).

1. 291*96 days, or, if conjunctions are of the same kind, 583"92 days.

2. 40''. 3. 19 : 6, or nearly 3:1. 4. lOifh., 120h.

5. p + P-s with notation of § 290. 6. 888 million miles, 164 yrs.

7. 6 months
; Vi or "63 of Earth's mean distance. 8. 398 days.

9. f of a year = 137 days.

10. Stationary at heliocentric conjunction only, never retrograde.

X. Examination Paper (p. 266).

3. I2V years = 378 days.

4. See §§ 323, 324. The alterations in Venus's brightening are

really not inconsiderable (see Ex. 3, p. 205).

6. Most rapid approach at quadrature ; velocity that with which the
Earth would describe its orbit in synodic period.

9. 287 days.

10. Draw the circular orbits about 0, radii 4, 7, 10, 16, 52 (§ 304).

The heliocentric longitudes (measured from T ) are roughly

as follows : $ 153°, ? 175°, 220^ <? 20°, If. 211°. The

C should be drawn close to ® at an elongation © C =90"
at first quarter.
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XI. Examples (p. 311).

2. 432,000 miles. 3. 2,250 miles.

6. 9,282,000 and 92,820,000 million miles respectively.

7. 37-8 billion miles = 378 x 10^^ miles.

8. 5 : TT = 1-6 : 1 roughly.

10. It will always appear half-way between its actual direction and

a point on the ecliptic 90° behind Sun. Path is roughly a

small circle of angular radius 45°.

11. 4° 35'.

13. (i.) On ecliptic 90'' from Sun. (ii.) In same or opposite direc-

tion to Sun. Effects greatest along great circles distant 90°

from these points.

14. (i.) At either pole of ecliptic, (ii.) In ecliptic.

16. Jan. 21, 10-25" Eastwards; Feb., 17-75" E. ; Mar., 20-50" E.

;

April, 17-75" E. ; May, 10-25" E. ; June, 0" ; July, 10-25"

Westwards; Aug., 17-75"W.; Sept., 20-50" W.; Oct., 17-75" W.;

Nov., 10-25" VV. ; Dec, 0".

18. 973,800 miles.

Miscellaneous Questions (p. 313).

5. 15°E. 6. In the autumn.

7. 17d. 5h. ; star is on equator, hour angle 60° E. 8. 1:^/7:7.

9. 24h. 50m. 30s. mean units = 24h. 54m. 35s. sidereal units.

10. At the equinoxes. 11. See § 376.

XII. Examples (p. 335).

1. 12^/6 sidereal hours = 16h. 58m. 5s. sidereal time.

2. Pendulum revolving in direction of hands of watch will have

less velocity in S. hemisphere.

7. Increased (i.) 59° 54' 51"; (ii.) 60° 15' 27". 12. 109 lbs.

XII. Examination Paper (p. 336).

3. By observing deviation of a projectile (§ 390), or by § 337 or § 389.

4. 16 \^3 = 27-7157 sidereal hours = Id. 3h. 33m. mean time.

5. 3-368 cm. per sec. per sec. ; -^ly. 9. See § 399.
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XIII. Examples (p. 368).

1. 2-97 miles per sec. 2. 15^ ft., or, ii g = 32-2, 15-576 ft.

3. 5h.35m. 4. 5-39 days. 5. 2,959,000. 11. 8-98".

13. The distances from the centre of the Sun are 457,579 miles,

457,579 f 278 miles, and 457,579 - 281 miles ; but these results

can only be considered as approximate.

14. 32-155 greater, owing to attraction of mountain.

IT. -253 of Earth's density ; 1-415, taking water = 1.

18. 894 poundals.

20. At first a hyperbola under the Earth's attraction. After going

some distance this attraction would become insensible, and

the Moon would describe an ellipse about the Sun rather

niore eccentric than the Earth's present orbit.

XIV. Examples (p. 419).

1. ^—

.

2. 2 : 5.
80-34

3. 24 : 7, by Ex. 1, § 442 Cor., or 16 : 5, using result of last example.

5. Tide on Mercury is higher in proportion 1 : -2888, or 45 : 13, or

7 : 2 nearly.

10. Direct shortly before, retrograde shortly after.

XIV. Examination Paper (p. 420).

7. (a) Yes; (h) No.



INDEX.

(The nuinbers refer to the pages throughout^

Aberration of Liglit, 295; cor-

rection for aberration deter-

mined, 298 ; its general effect

on the celestial sphere, 299

;

jomparison with annual paral-

lax, 300 ; to show that the

aberration curve of a star is an
ellipse, 301 ; its discovery by
Bradley, 302 ; the constant de-

termined by observation, 302

;

relation between the coefficient

of aberration and the equation

of light, 304 ; relation between
the coefficient of aberration

and the Sun's parallax, 310.—— diurnal, 308 ; its effect on
meridian observations, 309 ;

determination of its coefficient

by observations of the azimuths
of stars on the horizon, 310.

planetary, 306.

Altazimuth, 54.

Altitude, 8.

Angular diameter, 3.

distance, 3.

measure, its conversion to

time, 14.

velocities of planets, to com-
pare, 342.

Annual equation, 411.

Anomalistic year, 127.

Aphelion, 111.

Apogee, 106, 210.

Apparent area, 105, 109; of

Moon's phase, 204.

midnight, 24.

motion of a planet, 258.

noon, 24.

solar day, 24.

solar time, its disadvantages,

115.

Apparent Sun, 117.

Apse, 106.

Moon's, 210, 410.

^^line, 106, 111, 210; deter-
mination of its position, 109;
its progressive motion, 109, 211,

' 414.

Arctic and Antarctic circles, 88.

Areal velocity, 343 ; relation be-
tween areal velocity and actual
(linear) velocity, 344.

Aries, first point of, 7; to find,

99, 100; retrograde motion of

(see Precession).

Aristakchus : his method of

finding the Sun's distance, 205.

Asteroids, 240.

Astronomical clock, 13, 36.

diagrams : their practical
application, 28.

telescope, 36.

terms, table of, 12.

Astronomy defined, 1 ; its prac-
tical uses, 153.

Descriptive, Gravitational,

and Physical, defined, 1.

Autumnal equinox, 20.

Azimuth, 8.

Bar, double, 78.

Base line, measurement of, 78.

Bessrl : his method of determin-
ing the annual parallax of a star,

290 ; his day numbers, 403.

Binary stars, 292.

Black drop, 279.

Bode's Law, 239.

Bradley : his discovery of aber-

ration, 302 ; his discovery of

nutation, 403; his determina-
tion of refraction, 146.
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Calendar, Julian, 128 j Gregorian
correction, 128.

monthj 200.

Cardinal points, 7.

Cassini : his formula of refrac-

tion, 145.

Cavendish : his experiment for

finding the Earth's mass, 362.

Celestial equator, 6.

horizon, 5.

—— latitude, 10.

longitude, 10,

meridian, 6.

poles, 6.

sphere, 2.

Centre of mass, 355.

Centrifugal force, 324 ; its effects

on the accelei-ation of falling

bodies, 325 ; loss of weight of

a body due to it, 326.

Ceres, 241.

Chronograph, 43 ; photo-, 422.

Chronometer, 160; its error and
rate, 161.

Circle, of position, 187 ; transit, 81.

Circumpolar stars, 16; determi-
nation of latitude by, 167.

Civil Year, 128.

Clock, astronomical, 13, 36.

error and rate, 44, 45.

stars, 45, 398.

Colatitude, 11.

Collimating Eyepiece, 49.

Collimation, error, 46.

line of, 39.

Colures, 23.

Compass, points of, 9.

Conjunctions, 200, 245.

Coordinates : their use explained,

8 ; advantages of the different

systems, 11 ; table of, 12
;

transformation of, 16.

Culmination, 16.

Day, apparent solar, 24 ; explana-
tion of gain or loss of a day in

going round the world, 72.

Day and night, relative lengths,

89-92.

lunar, 382.

mean, 117.

numbers, Bessel's, 403.

perpetual, 92.

sidereal, 13.

Declination, 9, 10 ; name of, 9

;

expressed in terms of latitude

and meridian Z. D., 15 ; deter-

mination of the Sun's, 23;
method of observing, 43.

Declination Circle, 9, 56.

Delisle: his method of deter-

mining the Sun's parallax, 271.

Density of a heavenly body : its

determination, 366.

Dip of horizon ; defined, 73 ; its

determination, 74, 75 ; its effect

on th.e times of rising and
setting, 76, 422.

Direct motion, 22.

Disappearance of a ship at sea, 75.

Diurnal motion of the stars, 6.

aberration, 308,

Double bar, 78.

Earth : early observations of its

form, 63 ;
general effects of

change of position on it, 64;
its rotation, 64 ; measurement
of its radius, 67; A. R. Wal-
lace's method of finding its

radius, 77; ordinary methods
of finding its radius, 78; its

exact form, 81 ; determination
of its equatorial and polar
radii, 82 ; its exact dimensions,

82 ; its mean radius, 83 ; its

ellipticity or compression, 83
;

its eccentricity, 83 ; its zones,

88 ; determination of the eccen-
tricity of its orbit, 107 ; its

phases, 206 ; its place in the
solar system, 240 ; its rotation,

315 ; arguments in favour of

its rotation, 316 ; dynamical
proofs of its rotation, 317.
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Earth {continued) : general

effects of its centrifugal force,

324; its figure, 328; evidence

in favour of its annual motion
round the Sun, 337; verification

of the law of gravitation, 356 ;

its so-called "weight," 362 ; the

Cavendish experiment, 362
;

the moxmtain method of finding

its mass, 366 ; its mass deter-

mined by the common balance,

364 ; its mass determined by
observations of the attraction

of tides in estuaries, 365 ; the

pendulum method of finding its

mass, 365 ; its displacement

due to the Moon, 371 ; its rota-

tion retarded by tidal friction,

388
;
precession of its axis, 396

;

nutation of its axis, 401.

Earth's way, 299.

Eclipses, 219 et seqq. ; different

kinds of lunar E., 220 ; effects

of refraction on lunar E., 193,

221 ; different kinds of solar E.,

222 ; determination of greatest

or least number possible in a

year, 229 ; of Jupiter's satellites,

241 ; their retardation, 293.

Ecliptic, 7, 20, 99, 111 ; its obli-

quity, 11 ; determination of its

obliquity, 26, 104.

Ecliptic limits, 227, 228.

Ellipse, properties of, 423.

Elongation, 200, 244 ; changes of

E. of planet, 244, 246.

Equation, Annual, 411.

of equinoxes, 402.

of light, 293 ; its relation to

the coefficient of aberration,

304.

of time, 117 ; due to un-
equal motion, 118 ; due to ob-

liquity, 119 ; its graphical
representation, 121 ; it vanishes

four times a year, 122 ; its

maximum values. 123 j its de-

termination, 124.

Equation, personal, 46.

Equator, celestial, 6.

terrestrial, 64.

Equatorial, 56 ; its use, 57.

Equinoctial colure, 23.

points, 7, 20, 23.

time, 134.

Equinoxes, 20, 21, 23
j
precession

of, 103.

Evection, 411.

Fathom, 67.

First point of Aries, 7, 20; its

determination, 100.

First point of Libra, 7, 20.

Flamsteed : his method of deter-

mining the first point of Aries,

100 ; advantages of the method,
102.

FoucAULT : his pendulum experi-

ment, 318 ; his gyroscope, 321

;

his determination of the velo-

city of light, 293.

Full Moon, 203.

Geocentric latitude, 83, 112.

longitude, 112.

lunar distances, 180.

parallax : its general effects,

192 ; correction for, 192.

Geodesy, 77.

Geographical latitude, 83.

mile, 67.

Gibbosity of Mars, 252.

Gibbous Moon, 203.

Globes : their use, 3.

Gnomon, 25, 125.

Golden Number, 215.

Gravitation : Newton's law of,

352 ; remarks, 353 ; verification

for the Earth and Moon, 356.

Gravity: to compare its intensity

at different places, 329, 334;
to find its value, 334.

Gregory, Pope : his correction

of the Julian Calendar, 128.

Gyroscope or Gyrostat, 321, 395.
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Hallet : his method of deter-

mining the Sun's parallax by ob-

serving a transit of Yenus, 271.

Harvest Moon, 216.

Heliocentric latitude, 112.

longitude, 112.

Heliometer, 59.

Horizon, celestial, 5; artificial,159.

visible, 5, 73-76.

dip of, 73.

Horizontal parallax, 191.

point, 50.

Hour angle, 9 ; expressed in time,

13 ; its connection with right
ascension, 15.

circle, 76.

Instruments for meridian obser-

vations, 35 ; for ex-meridian
observations, 54; for geodesy,
107 ; for navigation, 153.

Introductory Chapter on Spheri-

cal Geometry, i.-vi.

Julius C^sar : his calendar, 128.

Juno, 240, 269.

Jupiter, 241 ; its satellites, 241.

Kater's reversible pendulum, 329.

Kepler : his laws of planetary
motion, 106, 111, 253 ; verifica-

tion of his first law, 107, 254

;

verification of the second law,

108, 254 ; deductions from the
second law, 109 ; verification

of the third law, 256 ; Newton's
deductions from his laws, 339,

345, 346, 348 ; his third law for

circular orbits, 340 ; correction

of the third law, 354.

Knot, 68.

Known star, 15, 45.

Lagging of the tides, 383-5.

Latitude of a place defined, 10

;

phenomena depending on
change of latitude, 65 ; change
due to ship's motion, 72.

Latitude (continued) : determi-
nation by meridian observa-

tions, 162 ; determination by
ex-meridian observations, 169.

celestial, 10.

geocentric, 83, 112.

geographical, 83.

heliocentric, 112.

parallel of, 71 ; length of

any arc of a given parallel, VI.

Leap year, 128.

Libra, first point of, 7.

Light, refraction of, 140 ; its velo-

city, 293 ; aberration of, 295
to find the time taken by the
light from a star to the Earth,

305.

Light-year, 305.

Local time: its determination,

171.

Log-line : its use in navigation,

68.

Longitude, celestial, 10.

geocentric, 112.

heliocentric, 112.

terrestrial, 69 ;
phenomena

depending on change of terres-

trial longitude, 70 ; change due
to ship's motion, 72; its deter-

mination at sea, 177; the

method of lunar distances, 179;
clearing the distance, 179 ; its

determination by celestial

signals, 181 ; its determination

on land, 182 ; its determination

by transmission of chronome-
ters, 182; by chronograph, 184;

by terrestrial signals, 185; by
Moon-culminating stars, 186

;

bv Captain Sumner's method,
186.

Loop of retrogression, 261.

Lunar distances, determination of

longitude by, 179.

geocentric, 180.

mountains: determination of

their height, 207.

1 Lunation, 27.
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Mars, 240 ; Kepler's observations
on Mars, 254 ; its parallax used
to determine that of the Sun,
268.

Mass, astronomical unit of, 352.

Mean noon, 117.

solar day, 117.

solar time, 117; its deter-

mination at a given instant of

sidereal time, 132.

Sun, 116, 117.

time, 116.

Mercury, 239 ; its period of rota-

tion, 264; frequency of its

transits, 282; its mass, 360, 417.

Meridian, celestial, 6.

line : its determination, 175.

prime, 69.

terrestrial, 64.

Meteors : their motion, 4.

IMetonic cycle, 215.

Metre, 67.

Micrometers, 58.

Midnight, apparent, 24.

Mile, geographical, 67.

nautical, 67.

Moon : its motion, 27 ; its age, 27 ;

itsposition defined by its centre,

53; illusory variations in its

size, 149 ; method of taking its

altitude by the sextant, 158;
determination of its parallax,

196; its distance, 197; its dia-

meter determined, 199 ; its

elongation, 200 ; determination
of its synodic period, 201 ; its

phases, 202; relation between
phase and elongation, 204 ; its

use in finding the Sun's dis-

tance, 205 ; its appearance
relative to the horizon, 206

;

determination of the height of

lunar mountains, 207 ; its orbit

about the Earth, 209; eccen-
tricity of its orbit, 210; its

nodes, 210 ; its perturbations,

210, 407; retrograde motion
of its nodes, 211, 408, 409.

Moon (continued) : progressive

motion of its apse line, 211, 410

;

its rotation, 212 ; its librations,

213 ; general effects of libra-

tion, 214 ; its eclipses, 219-221

;

determination of its geocentric
distance consistent with an
eclipse, 224; its greatest lati-

tude at syzygy consistent with
an eclipse, 226; synodic revo-

lution of its nodes, 228; its

occultations, 232 ; verification

of the law of gravitation, 356

;

effect of its attraction, 357 ; its

mass, 357 ; concavity of its path
about the Sun, 374; its disturb-

ing or tide-generating force,

375, 377 ; its orbital motion
accelerated by tidal friction,

388 ; its form and rotation,

391 ; its disturbing couple on
the Earth, 392 ; the rotation of

its nodes, 408; its other in-

equalities, 410, 411.

Nadir, 5.

point, determination of, 51.

Nautical mile, 67.

Neptune, 243 ; its discovery, 417.

New Moon, 27.

Newton, Sir Isaac : his deduc-
tions from Kepler's laws, 339,

345, 346, 348 ; his law of uni-

versal gravitation, 352.

Nodes, 27, 210; their retrograde
motion, 211.

North polar distance of a circum-
polar star, 17.

Number of eclipses in year, 229.

Nutation, lunar, 401 ; its general
effects, 402 ; its discovery, 403 ;

to correct for, 403 ; its physical
causes, 404.

monthly, 406.

solar, 405.

Obliquity of ecliptic, 11 ; its de-

termination, 26.
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Observatory, 23.

Occultations, 232.

Offing, 73.

Opposition, 200.

Parallactic inequality, 411.

Parallax, 179, 191 ;
geocentric

parallax, 191; horizontal paral-

lax, 191 ;
general effects of

and correction for geocentric

parallax, 192 ; relation between
horizontal parallax and dis-

tance of celestial body, 194;
compared with refraction, 195;

parallax of Moon determined,
196

;
parallax of planet deter-

mined, 198 ; relation between
parallax and angular diameter,

199 ; determination of the

Sun's parallax, 268 et seqq.
;

annual parallax defined, 283;
to find the correction for

annual parallax, 284; relation

between the parallax and dis-

tance of a star, 285 ; its general

effects on the position of a star,

286; determination of the an-

nual parallax of a star, 290.

Pendulum, Foucault's, 318 ; Cap-
tain Kater's reversible, 329;
oscillations of a simple pen-

dulum, 330 ; to find the change
in the time of oscillation due
to a variation in its length or

in the intensity of gravity,

330; to compare the times of

oscillation of two pendulums of

nearly equal periods, 333 ; pen-

dulum method of finding the
Earth's mass, 365.

Perigee, 106, 210.

Perihelion, 111.

Perpetual day : determination of

its length, 97.

Personal equation, 46.

Phases of Moon, 202 j of planet,

251, 252.

Perturbations, lunar, 210, 407;
rotation of nodes, 408 ; due to

average value of radial disturb-

ing force, 409 ; variation, evec-

tion, annual equation and
parallactic inequality, 410, 411.

planetary, 411; periodical,

413, 414 ; inequalities of long
period, 415 ; secular, 416.

Photography, stellar, 60, 421.

Planet : its position defined by
centre, 53; determination of

its parallax, 198 ; its occulta-

tion, 230 ; definition, 238 ; in-

ferior and superior planets,

244 ; changes in elongation of

a inferior planet, 244 ; to find

the ratio of the distance from
the Sun of an inferior planet

to that of the Earth, 246;
changes in elongation of a
superior planet, 247; to com-
pare the distance from the Sun
of a superior planet with that
of the Earth, 248 ; determina-
tion of the synodic period of an
inferior planet, 249; relation

between the synodic and side-

real periods of a planet, 250
phases of the planets, 251, 252
motions relative to stars, 258 :

transits of inferior planets

271 ; its aberration, 306, 307
to compare the velocities and
angular velocities oftwo planets
moving in circular orbits, 342

;

having given the velocity of a
planet at any point of its orbit,

to construct the ellipse de-

BCi-ibed under the Sun's attrac-

tion, 350 ; to find the mass of a
planet which has one or more
Batellites, 359; its perturba^

tions, 411} masses determined,
417.

^
Points of the compass, 9<

Polar distance, 9,

point : its determination, 51«
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Pole, celestial, 6.

terrestrial, 64.

Port, establishmcBt of the, 386.

Precession of the equinoxes, 103,

392.

Earth's axis, 396.

a spinning-top, 395.

luni-solar, 393 ; to apply the

corrections for, 397 ; various

effects of, 398; its effects on
the climate of the Earth's

hemispheres, 400.

Prime vertical, 7.

Prime vertical instrument : deter-

mination of latitude by its use,

170.

Priming of the tides, 383-5.

Quadrature, 200.

Radiant, 4.

Reading microscope, 40.

Refraction, 140; laws of R.,

140; relative index of R., 140;
general description of atmo-
spherical R., 141 ; its effect

on the apparent altitude of a
star, 141 ; law of successive

R., 142 ; formula for astro-

nomical R., 142 ; Cassini's for-

mula, 145; coefficient found
by meridian observations, 146

;

othermethods of determination,

147 ; its effects on rising and
setting, 148 ; effects on dip and
distance of horizon, 149 ; effects

on lunar eclipses and occulta-

tions, 150, 221 ; comparison of

R. with parallax, 195.

Retrograde motion, 22, 258.

Right ascension, 10 ; expressed in

time, 14; connection with hour
angle, 15.

RoEMER : his method of finding

the velocity of light, 293.

Rotation of Earth, 64, 315; of

Moon,212; of Moon's nodes, 211,
408 ; of Sun and planets, 264.

Saros of the Chaldeans, 231.

Satellite, defined, 238 ; their obe-

dience to Kepler's laws, 237.

Saturn, 242
; phases of its rings,

252.

Seasons, 94 ; effect of the length
of day on temperature, 94 ;

other causes affecting tempera-
ture, 94 ; unequal length of, 109.

Secondary, iii., 238.

Sextant, 154 ; its errors, 157 ;

determination of the index error,

157 ; method of taking altitudes

at sea, 158 ; method of taking

altitudes of Sun or Moon, 158.

Sidereal day, 13.
• month, 200 ; its relation to

the synodic month, 200.

noon, 13.

period, 200, 250.

time, 13, 25 ; its disadvan-

tages, 115 ; its determination
at a given instant of mean solar

time, 131 ; its determination at

Greenwich or in any longitude,

133.

year, 127.

Solar day, apparent, 24.

system, tabular view of, 243

its centre of mass, 361.

time, 24 ; its disadvantages,

115.

Solstices, 21, 23.

Solstitial colure, 23.

points, 23.

Southing of stars, 16.

Spectrum analysis, 60.

Stars : independence of their di-

rections relative to observer's

position on the Earth, 4 ; their

diurnal motion, 5, 13 ; culmi-

nation, 16 ; southing, 16 ; cir-

cumpolar stars, 16 ; rising and
setting, 18 ; time of transit, 19

;

to show that a star appears to

describe an ellipse, owing to

parallax, 287 j owing to aber-

ration, 301.
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Stars, morning and evening, 25.

Stationary points, 258 ; their de-

termination, 262, 263.

Sub-solar point, 187.

Summer solstice, 20.

and winter, causes of, 94.

Sumner, Captain : his method of

finding longitude, 187.

Sundial, 125
;
geometrical method

of graduation, 126.

Sun : its annual motion, 7 ; its

annual motion in the ecliptic,

20 ; its motion in longitude,

right ascension and declination,

20, 21 ; its variable motion in

right ascension, 22 ; determi-

nation of its right ascension and
declination, 23, 24 ; its position

defined by its centre, 53 ; its

diurnal path at different sea-

sons and places, 88 ; to find

length of time of sunrise or

sunset, 98 ; observations of its

relative orbit, 105 ; its apparent
area, 105, 109 ; its apparent
annual motion accounted for,

110 ; illusory variations in size,

149 ; method of finding its alti-

tude by the sextant, 158 ; difii-

culty of finding its parallax, 197;

its distance determined by
Aristarchu'', 205 ; solar eclipses,

219, 222, 234; description, 238;
its period of rotation, 264 ; de-

termination of its distance from
the Earth, 268 et seqq. ; its paral-

lax determined by observation

of the parallax of Mars, 268

;

parallax by observations on the

asteroids andYenus, 269; paral-

lax determined by observations

of the transit of Venus, 271 et

seqq.; advantages and disadvan-

tages of Halley's and Delisle's

methods, 280 ; relation between
coefficient of aberration, Sun's
parallax, and velocity of light,

306.

Sun (continued) : to find the ratio

of its mass to the Earth's, 358 :

gravity on its surface, 366 ; its

parallax determined by observa-
tions of lunarand solar displace-

ments of the Earth, 373; its

disturbing or tide-generating

force, 375, 377 ; its mass com-
pared with that of the Moon,
from observations of the rela-

tive heights of the solar and
lunar tides, 388 ; its disturbing

couple on the Earth, 392; gravi-

tational methods of finding its

distance, 416.

Synodic month, 200.

period, 200, 250.

Syzygy, 200.

Telescope, astronomical, 37.

Terrestrial equator, 64.

longitude, 69.

meridian, 64.

pole, 64.

Theodolite, 79.

Tidal constants, 387.

friction, 388 ; application to

the solar system, 392.

Tides, 375 ; equilibrium theory of

their formation, 379; canal

theory, 381 ; semi - diurnal,

diurnal, and fortnightly tides

due to the Moon, 383; semi-diur-

nal, diurnal, and six-monthly
tides due to the Sun, 383; spring

and neap tides, 383; their

priming and lagging, 383-

385 ; establishments of ports

386.

Time: its reduction to circular

measure, 14 ; relation between
the different units, 129, 136.

equinoctial, 134.

local : its determination by
method of equal altitudes, 171,

172.

lunar, 382.

Trade winds, 323.
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Transit, 14 ; eye and ear method
of taking transits, 42 ; of Venus,
271-282 ; of Mercury, 282.

circle, 37 ; corrections re-

quired for right ascension, 44
;

corrections required for decli-

nation, 49.

Triangulation, 79.

Tropics, 88.

Tropical year, 127.

True Sun, 117.

Uranus, 242.

Variation, 410,

Venus, 240; its period of rota-

tion, 264; observations of its

transit used to determine the

Sun's parallax, 271 ; determi-

nation of the frequency of its

transits, 281 j its mass, 360,

417.

Velocity, angular, 342.

area!, 343.

of light, 293.

Velocities of planets compared,
342.

Vernier, 157.

Vernal equinox, 20.

Vertical, 7.

circle, 7.

prime, 7.

Vesta, 240.

Wallace, Alfred Russell : hi

method of finding the Earth'
radius, 77.

"Waning and waxing Moons, 203.

Winter solstice, 20.

Year, 20.

anomalistic, 127.

civil, 128.

leap, 128.

sidereal, 127.

synodic, 128.

tropical, 127.

Zenith, 5.

distance, 8.

point, 51.

sector, 80.

Zodiac, 25.
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F. G. Plaistowe, M.A. Camb. Is. 6(i.
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Cicero.—De Amicitia. By A. H. Allcroft, M.A. Oxon., and W. F.
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" The notes are all that could be desired."

—

Schoolmaster.

The above editions of LATIN and GREEK CLASSICS are on the

following plan:

—

A short Introduction gives an account of the Author and his

chief works, the circumstances under which he wrote, and his style,

dialect, and metre, where these call for notice.
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in a Historical and Geographical Index; by this means the
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principal parts of verbs are given, and (when there is any difficulty

about it) the parsing of the word as it occurs in the Text. The

Vocabulary is interleaved with writing paper.

Two series of Test Papers are, as a rule, provided, of which the

first and easier series is devoted entirely to translation, accidence, and

very elementary points of Syntax; the second, which is intended for

use the last time the book is read through, deals with more advanced

points.

Acts of the Apostles .

.

Aeschylus — Prometheus
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Gallic War, Bk. 2

Gallic War, Bk. 3

Gallic War, Bk. 5

Gallic War, Bk. 6
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-De Amicitia ....
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In Catilinam, Bk. 3
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Pro Balbo 1

Pro Cluentio 1

Pro Milone 1

5. d.
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LiVY—Bk. 1 10
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S.ALLUST—Catiline

Sophocles—Antigone

,

,

Electra .

.

Tacitus—Annals, Bk. 1

,, Histories, Bk
Vergil—Aeneid, Bk. 1
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Xatin ant) (BreeK,

GRA3IMAES AND READERS.

The Tutorial Greek Reader, or Prooemia Graeca, By A. Waugh
Young, M.A. Lond., Gold Medallist in Classics, Assistant Ex-
aminer at the University of London. 2s. 6d.

The Tutorial Greek Grammar. [In preparation.

Higher Greek Reader: A Course of 132 Extracts from the best writers,

in Three Parts, with an appendix containing the Greek Unseens
set at B.A. Lond. 1877-1893. 3s. 6d.

The Tutorial Latin Grammar. By B. J. Hayes, M.A. Lond. and
Camb., and W. F. Masom, M.A. Lond. Second Edition. 3s. 6d.

" Practical experience in teaching and thorough, familiarity with details are
plainly recognisable in this new Latin Grammar. Great pains have been taken to
bring distinctly before the mind all those main points which are of fundamental
importance and require firm fixture in the memory, and the illustrative examples
have been gathered with much care from the classics most usually read for examina-
tions. Though full, it is not overcrowded with minutiae."

—

Educational Netvs.
"It is accurate and full without being overloaded with detail, and varieties of

type are used with such efEect as to minimise the work of the learner. Tested in
respect of any of the crucial points, it comes well out of the ordeal."

—

Schoolmaster.

The Tutorial Latin Grammar, Exercises to. [In the press.

The Preceptors' Latin Course. {In preparation.

Latin Composition and Syntax. With copious Exercises. By A. H.
Allcroft, M.A. Oxon., and J. H. Haydon, M.A. Camb. and
Lond. Third Edition. 2s. 6d.

The more advanced portions of the book-work are denoted by an
asterisk, and the relative importance of rules and exceptions is shown
by variety of type. Each Exercise is divided into three sections of

progressive difRcult5^

"This useful little book."

—

Journal of Education.
"This is one of the best manuals on the above subject that we have met with for

some time. Simplicity of statement and arrangement: apt examples illustrating

each rule ; exceptions to these adroitly stated just at the proper place and time, are
among some of the striking characteristics of this excellent book. Every advantage
too has been taken of printing and type to bring the leading statements prominently
before the eye and mind of the reader. It will not only serve as an admirable class-

book, but from its table of contents and its copious index will prove to the private
student an excellent reference book as well."

—

The Schoolmaster.
"The clearness and concise accuracy of this book throughout are truly remark-

able."

—

Educatioti.
"The arrangement and order are exceedingly good."

—

School Board Chronicle.

Higher Latin Composition. [In preparation.

The Tutorial Latin Reader. With Vocabulary. 2s. 6d.

"A soundly practical work."

—

The Guardian.

Higher Latin Reader. [In the press.
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IRoman anb (Brecian Ibiatoii?^

The Tutorial History of Rome. (To 14 A. d.) By A. H. Allceoft,
M.A. Oxon.,and W. F. Masom, M.A. Lond. With Maps. 3s. 6d.

" It is well and clearly written."

—

Saturday Review.

History of Rome,- 31 B.C. to 96 a. d.: The Early Principate. By
A. H. Allceoft, M.A. Oxon., and J. H. Haydon, M.A.
Camb. and Lond. 28. 6d.

" Accurate, and in accordance with the authorities."

—

Journal of Education.
" It is deserving of the highe.st praise. All that the student can r^qmre."—Literary

World.

A Longer History of Rome. In Five A^'olumes, each containing a

Chapter on the Literature of the Period :

—

1. History of Rome, 287-202 B.C.: The Struggle for Empire. By
W. F. Masom, M.A. Lond. 4s. 6d.

2. History of Rome, 202-133 B.C.: Rome under the Oligarchs. By
A. H. Allceoft, M.A. Oxon., and W. F. Masom, M.A. Lond.
4s. 6d.

3. History of Rome, 133-78 B.C. : The Decline of the Oligarchy. By
W. F. Masom, M.A. Lond. 4s. 6d.

4. History of Rome, 78-31 B.C. : The Making of the Monarchy.
By A. H. Allceoft, M.A. Oxon. 4s. 6d.

6. History of Rome, 31 B.C. to 96 a. d. (See above.)

A History of Greece. In Six Volumes, each containing a Chapter on
the Literature of the Period :

—

1. Early Grecian History. A Sketch of the Historic Period to

495 B.C. By A. H. ALLCEOFT, M.A. Oxon.. and W. F.
Masom, M.A. Lond. 3s. 6d.

"For those who require a knowledge of the period no better book could be
recommended."—^rfwcafto/ifl/ Times.

1, 2. History of Greece, to 431 B.C. By A. H. Allceoft, M.A.
Oxon., and W. F. Masom, M.A. Lond. 6s. 6d. [/« the press.

3. History of Greece, 431-404 B.C. : The Pelopennesian War. By
A. H. Allceoft, M.A. Oxon. 4s. 6d.

4. History of Greece, 404-362 B.C. : Sparta and Thebes. By A. H.
Allceoft, M.A. Oxon. 4s. 6d.

5. History of Greece, 371-323 B.C. : The Decline of Hellas. By
A. H. Allceoft, M.A. Oxon. 4s. 6d.

6. History of Sicily, 490-289 B.C. By A. H. Allceoft, M.A.
Oxon., and W. F. Masom, M.A. Lond. 3s. 6d.

" "We can bear high testimony to its merits."—Schoolmaster.
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Jfrencb.
The Tutorial French Accidence. By Ernest Weekley, M.A. Lond.

With Exercises. 3,s. 6d.
" The essentials of the accidence of the French Language are skilfully exhibited

in carefully condensed synoptic sections."

—

Educational News.
"A most practical and able compilation."

—

Public Opinion.
"The manual is an excellent one—clea'r, well-arranged, and if not quite ex-

haustive, at least very fairly complete."— ff/ffs.90W Herald,

The Tutorial French Syntax. By Ernest Weekley, M.A. Lond.,
and A. J. Wyatt, M.A. Lond. & Camb. With Exercises. 3s. 6d.

"It is a decidedly good book and should have a ready sale."

—

Guardian.
"Mr. "Weekley has produced a clear, full, and careful Grammar in the 'Tutorial

French Accidence,' and the companion volume of ' Syntax,' by himself and Mr.
Wyatt, is worthy of it."

—

Saturday Review.

The Tutorial French Grammar. Containing the Accidence and the

Syntax in One Volume. -Is. 6d.

The Preceptors' French Reader. By Ernest Weekley, M.A. Lond.
With Notes and Vocabulary, is. 6d. (The Preceptors' Series.)

French Prose Header. Edited by S. Barlet, B. es Sc, Examiner
in French to the College of Preceptors, and W. F. Masom, M.A.
Lond. With VOCABULARY. Second Edition. 2s. 6d.

"The book is very well adapted to the purpose for which it is intended."—
Schoolmaster.
"Admirably chosen extracts. They are so selected as to be thoroughly interesting

and at the same time thoroughly illustrative of all that is best in French literature."—School Hoard Chronicle.

Advanced French Reader: Containing passages in prose and verse

representative of all the modern Authors. Edited by S. Barlet,
B. es Sc, Examiner in French to the College of Preceptors, and
W. F. Masom, M.A. Lond. 3s. 6d.

" Chosen from a large range of good modem authors, the book provides excellent

practice in 'Unseens.' "

—

The Schoolmaster.

lEnglieb Ibietorij.

The Tutorial History of England. By C. S. Fearenside, M.A.
Oxon. \_In preparation.

The Intermediate Text-Book of English History : a Longer History

of England. By C. S. Fearenside, M.A. Oxon., and A.
Johnson Evans, M.A. Camb., B.A. Lond. With Maps & Plans.

Volume I., to 1485. \^In jjreparation

.

Volume TL, 1485 to 1603. 4s. 6d.

Volume III., 1603 to 1714. 4s. 6d.

Volume IV., 1685 to 1801. 4s. 6d.
" The results of extensive reading seem to have been photographed upon a small

plate, so that nothing of the effect of the larger scene is lost."

—

Teachers^ Monthly.
" Hi.« genealogical tables and his plans of the great battles are very well done, as

also are he brief biographical sketches at the end."

—

Literary Opinion.
" It s lively ; it is exact ; the style is vigorous and has plenty of swing ; the facts

are numerous, but well balanced and admirably arranged."

—

JEducation.
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EriQlieb Xanguase anb literature*

The English Language : Its Historj^ and Structure. By W. H. Low,
M.A. Lond. With Test Questions. Third Edition. 3s. 6d.

Contents :—The Relation of English to other Languages—Survey
of the Chief Changes that have taken place in the Language

—

Sources of our Vocabulary—The Alphabet and the Sounds of

English—Grimm's Law—Gradation and Mutation—Trans-
position, Assimilation, Addition and Disappearance of Sounds in
English—Introductory Remarks on Grammar—The Parts of

Speech, etc.— Syntax—Parsing and Analysis—Metre— Test
Questions.

" A clear workmanlike history of the English language done on sound principles.'—Saturday Review.
"The author deals very fully with the source and growth of the language. The

parts of speech are dealt with historically as well as grammatically. The work is

scholarly and accurate."

—

Schoolmaster.
" The history of the language and etymology are both well and fully treated."

—

Teachers' Monthly.
"Aptly and cleverly written."

—

Teachers'' Aid.
"The arrangement of the book is demised in the manner most suited to the

student's convenience, and most calculated to impress his memory."

—

Lyceum.
" It is in the best sense a scientific treatise. There is not a superfluous sentence."—JSducational Ne^cs.

The Preceptors' English Grammar. With numerous Exercises. By
Arnold Wall, M.A. Lond. [In preparation

.

The Intermediate Text-Book of English Literature. By W. H. Low,
M.A. Lond., and A. J. Wyatt, M.A. Lond. and Camb.
Volume I., to 1580. Ss. 6d. [In the press.

Volume II., 1558 to 1660. 3s. 6d.

Volume III., 1660 to 1798. 3s. 6d.

"Really judicious in the selection of the details given."

—

Saturday Review.
"Designed on a thoroughly sound principle. Facts, dates, and representative

quotations are plentiful. The critical extracts are judiciously chosen, and Mr. Low's
own writing is clear, effective for its purpose, and evidently the result of thorough
knowledge and a very considerable ability to choose between good and bad."

—

National Observer.
"It affords another example of the author's comprehensive grasp of his subject,

combined with a true teacher's power of using such Judicious condensation that the
more salient points are brought clearly into view."— Teachers' Monthly.
"Mr. Low has succeeded in giving a very readable and lucid account of the

literature of the time."—Literary World.
"Mr. Low's book forms a serviceable student's digest of an important period in

our literature."— <S'c/i ooZw?<7sfer.

"The style is terse and pointed. The representative quotations are aptly and
judiciously chosen. The criticisms are well grounded, clearly expressed and
modestly presented."—J/or«w^ Post.

A Middle English Reader. By S. J. Evans, M.A. Lond.
[In preparation.
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Addison.—Essays on Milton, Notes on. By W. H. Low, M.A. 2s.

Chaucer.—Prologue, Knight's Tale. With Inteoduction and Notes
by A. J. Wyatt, M.A. Lond. and Camb., and a Glossary by
S. J. Evans, M.A. Lond. 2s. 6d.

Dryden.—Essay on Dramatic Poesy.—Edited by W. H. Low, M.A.
Lond. Text and Notes. 3s. 6d. Or separately, 2s. each.

Goldsmith.—Poems. Edited by Austin Dobson. 2s. 6d. net.

Havelok the Dane. A Close Translation, preceded by the Addi-
tional Notes and Corrections issued in Prof. Skeat's New Edition.

By A. J. Wyatt, M.A. Lond. and Camb. 3s.

Langland.—Piers Plowman. Prologue and Passus I. -VII., Text B.
Edited by J. F. Davis, D.Lit. Lond., Assistant Examiner at

the University of London. 4s. 6d.

Milton.—Samson Agonistes. Edited by A. J. Wyatt, M.A. Lond.
and Camb. 2s. 6d.

" A capital Introduction. The notes are excellent."

—

Educational Times.

Milton.—Sonnets. Edited by W. F. Masom, M.A. Lond. Second

Edition. Is. 6d.

Shakespeare.—With Introduction and Notes, by Prof. W. J.

EOLFE, D.Litt., in 40 volumes. 26. each.

Merchant of Venice i
Winter's Tale

\

Hamlet
Tempest King John King Lear
Midsummer Night's Richard II. ! Csrmbeline
Dream Henry IV. Part I.

{

Jiilius Caesar
As You Like It I

Henry IV. Part II. Coriolanus

Much Ado About Nothing Henry V. ' Antony and Cleopatra

Twelfth Night Henry VI. Part I. I Timon of Athens
Comedy of Errors Henry VI. Part II. ! Troilus and Cressida

Merry Wives of Windsor Henry VI. Part III.
j

Pericles

Love's Labour's Lost Richard III. ! The Two Noble Kinsmen
Two Gentlemen of Verona Henry VIII.

;

Titus Andronicus
The Taming of tJie Shrew Romeo and Juliet Venus and Adonis
All's Well toat EndsWell Macbeth Sonnets
Measure for Measure Othello

Shakespeare.—Henry VIII. With Introduction and Notes by
W. H. Low, M.A. Lond. Second Edition. 28.

Sheridan.—The Rivals. Edited by W. H. Low, MA., Lond. Is.

"A fully annotated edition . . . complete and thoroughly workmanlike."

—

Education.

Spenser's Shepherd's Calender, Notes on, with an Introduction.
By A. J. Wyatt, M.A. Lond. and Camb. 2s.
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flDental anb fIDoral Sctence*

Ethics, Manual of. By J. S. Mackenzie, M.A., Fellow of Trinity

College, Cambridge, Examiner in the Universities of Cambridge

and Aberdeen. Second Edition. 6s. 6d.

" In writing this book Mr. Mackenzie has produced an earnest and striking con-
tribution to the ethical literature of the time."

—

Mind.

"This excellent manual."

—

International Journal of Ethics.

" Mr. Mackenzie may be congratulated on having presented a thoroughly good
andhelpful guide to this attractive, yet elusive and diflacult, subject."

—

Schoolmaster.

" It is a most admirable student's manual."

—

Teacher''s Monthly.

"Mr. Mackenzie's book is as nearly perfect as it could be. It covers the whole
field, and for perspicuity and thoroughness leaves nothing to be desired. The pupil
who masters it will find himself equipped with a sound grasp of the subject such as
no one book with which we are acquainted has hitherto been equal to supplying.
Not the least recommendation is the really interesting style of the work."

—

Literary
World.

'
' "Written with lucidity and an obvious mastery of the whole bearing of the subj ect.'

'

—Standard.

" No one can doubt either the author's talent or his information. The ground of
ethical science is covered by his treatment completely, sensibly, and in many
respects brilliantly."

—

Manchester Guardian.

" For a practical aid to the student it is very admirably adapted. It is able, clear,

and acute. The arrangement of the book is excellent.

—

Neioeastle Daily Chronicle.

Logic, A Manual of. By J. Welton, M.A. Lond. 2 vols. Vol. I.,

Second Edition, 8s. 6d. ; Vol. II., 6s 6d.

This book embraces the entire London B.A. and B.Sc. Syllabus,

and renders unnecessary the purchase of the numerous books hitherto

used. The relative importance of the sections is denoted by variety of

type, and a minimum course of reading is thus indicated.

Vol. I. contains the whole of Deductive Logic, except Fallacies,

which are treated, with Inductive Fallacies, in Vol. II.

" A clear and compendious simimary of the views of various thinkers on important
and doubtful points."

—

Joxirnal of Uaucation.

" A very good book . . . not likely to be superseded for a long time to come."

—

Uducational Hevieiv.

"Unusually complete and reliable. The arrangement of divisions and subdivisions
is excellent, and cannot but greatly facilitate the study of the subject by the diligent
student."

—

Schoolmaster.

"The manual may be safely Tecommendied."—Educational Times.

Undoubtedly excellent."—^o^rrf Teacher.
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flDatbematiC6 anb fIDecbantce*

Algebra, The Tutorial. By William Briggs, M.A., LL.B.,
F.E.A.S., and G. H. Beyan, Sc.D., M.A., F.R.S. Based on the
Algebra of Eadhakrishnan.

Part I. Intermediate CorRSE. \_In the press.

Part II. Advanced Course. \_In preparation.

Astronomy, Elementary Mathematical. By C. W. C. Barlow, M.A.,
Lond. and Camb., B.Sc. Lond., and G. H. Bryan, Sc.D., M.A.,
F.R.S., Fellow of St. Peter's College, Cambridge. Second Edition,

with Answers. 68. 6d.

" Probably within the limits of the volume no better description of the methods by
which the marvellous structure of scientific astronomy has been built up could have
been given."

—

Atheticenm.
" Sure to find favour with students of astronomy."

—

Mature.
" This book supplies a distinct want. The diagrams are clear, the style of writing

hicid, and the mathematical knowledge required but small."

—

Teachers' Monthly.

"Completely successful,"

—

Literary World.

"One noticeable feature of the book is that the more important theorems are care-
fully illustrated by worked out numerical examples, and are so well arranged and
clearly written that the volume ought to serve as a good text-book."

—

Bombay
Advertiser.

"A careful examination has led to the verdict that the book is the best of its kind.
It is accurate and well arranged, and in every respect meets the requirements for
which it has been designed."

—

Practical Teacher.

"It is an admirable text-book."

—

School Guardian.

"It will carry a student a long way in the sound study of astronomy."

—

National
Observer.

Coordinate Geometry: The Right Line and Circle. By William
Briggs, M.A., LL.B., F.R.A.S., and G. H. Bryan, Sc.D., M.A.,
F.R.S. Second Edition. 3s. 6d.

" It is thoroughly sound throughout, and indeed deals with some difficult points
with a clearness and accuracy that has not, we believe, been surpassed.''

—

Edtication.

" An admirable attempt on the part of its authors to realize the position of the
average learner, and to provide for the wants of the private student. . . . Frequent
exercises and examination papers have been interspersed, and different sizes of type
and intelligently drawn figures will afford great assistance in revision."

—

Educational
Times.

"Thoroughly practical and helpful."

—

Schoolmaster.

"Thoroughly sound, and deals clearly and accurately with difficult points."

—

The
Indian Engineer.

"Another of the excellent books published by the University Correspondence
College Press. The arrangement of matter and the copious explanations it would be
hard to surpass. It is the best book we have seen on the subject."

—

Board Teacher.

" The authors have had exceptional opportunities of appreciating the difficulties

of beginners, and they have succeeded in producing a work which will be found
especially useful."

—

English Mechanic.

Coordinate Geometry, "Worked Examples in : A Graduated Course on

the Right Line and Circle. '2s. 6d.
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/IDatbematics anb {Jl^cchdiXiicQ -continued.

Dynamics, Text-Book of. By AVilliam Beiggs, M.A., F.C.S.,
F.R.A.S., and CI. H. Bryan, Sc.D., M.A., F.R.S. 2s. 6d.

Euclid.—Books I. -IV. By Rupeet Deakin, M.A. Lond. and Oxon.,
Headmaster of Stourbridge Grammar School. \^In preparation

.

Geometry of Similar Figures and the Plane. (Euclid VI. and XI.)
With numerous Deductions worked and unworked. By C. W. C.

Baelow, M.A., B.Sc, and G. H. Beyan, Sc.D., F.R.S. 2s. 6d.

Hydrostatics, An Elementary Text-Book of. By William Beiggs,
M.A., F.C.S., F.R.A.S., and G. H. Beyan, Sc.D., F.R.S. 2s.

Mechanics, An Elementary Text-Book of. By the same authors.

3s. 6d.

" A most usefvil and helpful manual."

—

Educational Review.

Mechanics, First Stage. By F. Rosenbeeg, M.A. 2s. (Organized
Science Series).

" The work of a practical teacher."

—

Educational Reciew.

Mechanics and Hydrostatics, Worked Examples in: A Graduated
Course on the London Matriculation Syllabus. Third Edition,

Revised and Enlarged. Is. 6d.

Mensuration of the Simpler Figures. By William Beiggs, M.A.,
F.C.S., F.R.A.S., and T. W. Edmondson, B.A. Lond. and Camb
2s. 6d.

Mensuration and Spherical Geometry: Being Mensuration of the
Simpler Figures and the Geometrical Properties of the Sphere.
Specially intended for London Inter. Arts and Science. By
the same authors. 3s. 6d.

"Although intended to meet the requirements of candidates for particular
examinations, this book may be used generally with safety. The chief feature in it

appears to be the inclusion of proofs of all formulte presented. It is thus far
more than a mere collection of rules and eiLa,vcv^\e?,."^Educational Times.
"The book comes from the hands of experts; we can think of nothing better

qualified to enable the student to master this branch of the syllabus, and what is

more important still, to promote a correct style in his mathematical manipiilations."—Schoolmaster.

Statics, Text-Book of. By William Beiggs, M.A., LL.B., F.R.A.S.,
and G. H. Beyan, Sc.D., M.A., F.R.S. 2s. 6d.

Trigonometry, The Elements of. By William Beiggs, M.A., and
G. H. BfiYAN, Sc.D. \_In preparation.

Trigonometry, Synopsis of Elementary. Interleaved. Is. 6d.

" An admirable little handbook."

—

Lyceum.
"For its purpose no better book could be recommended."

—

Educational News.
"Pithy definitions, numerous formulae, and terse explanatory notes."

—

School-
master.
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Cbemi5tr?.
Elementary Qualitative Analysis. By William Beiggs, M.A.,

F.C.S., and R. W. Stewaet, D.Sc. Second Edition. Is. 6d.

"Likely to prove a useful and trustworthy assistance to those for whom it is
especially intended."

—

Nature.

"Every help that can be given, short of oral instruction and demonstration, is

here given ; and. not only will the private student find this a welcome aid, but the
class-master will be glad of the help furnished by Messrs. Briggs and Stewart, whose
names are a guarantee of accurate information."

—

Education.

"Its treatment of the subject in hand is very thorough, and the method is on
sound lines."

—

Schoolmaster.

Analysis of a Simple Salt. With a Selection of Model Analyses,
and Tables of Analysis (on linen). By the same Authors.
Fourth Edition. 2s. 6d.

"The selection of model analj'ses is an excellent feature."

—

Educational Times.

Chemistry, The Tutorial. By G. H. Bailey, D.Sc. Lond., Ph.D.
Heidelberg, Lecturer in Chemistry at Victoria University.

Part I., Non-Metals.- 3s. 6d. [_In the press.

Part II., Metals. 3s. 6d. \^In preparation.

Chemistry, Synopsis of Non-Metallic. With an Appendix on Calcu-
lations. By William Beiggs, M.A., LL.B., F.C.S. Interleaved.

Is. 6d.

"The notes are very clear, and just the thing to assist in the revision of the
subject."

—

Literary Opinion.
" An-anged in a very clear and handy form."

—

Journal of Education.

Biology, Text Book of. By H. G. Wells, B.Sc. Lond., F.Z.S., F.C.P.
With an Ikteoduction by Prof. G. B. HowES, F.L.S., F.Z.S.

Paet I., Vertebrates. Second Edition. 6s. 6d.

Part II,, Invertebrates and Plants. 6s. 6d.

"The Text-Book of Biology is a most useful addition to the series already issued,

it is well-arranged, and contains the matter necessary for an elementary course of
vertebrate zoology in a concise and logical order."

—

Journal of Education.

"Mr. Wells' practical experience shows itself on every page; his descriptions are
short, lucid, and to the point. We can confidently recommend it."

—

Educational
Times.

"The numerous drawings, the well-arranged tables, and the careful descriptions
will be of the utmost value to the student."

—

Schoolmaster.

"Mr. Wells deals with everything he ought to deal with, and touches nothing that
he ought not to touch. For the higher forms of Modern Side we commend this text-

hook without reserve ; for the special student of biology we urge its use with enthu-
. siasm."

—

Educational Review.
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By R. W. Stewaet, D.Sc. Lond.

Heat and Light, Elementary Text-Book of. Third Edition. 3s. 6d.

"A student of ordinary ability who works carefvdly through this hook need not
fear the examination."

—

The Schoolmaster.
" It will be found an admirable text-book."

—

Educational Neics.
" A well-printed and well-illustrated book. It strikes us as a trustworthy guide."—Practical Teacher.
"A welcome addition to a useful series."

—

School Guardian.

Heat, Elementary Text-Book of. 2s.

Light, Elementary Text-Book of. 2s.

Magnetism and Electricity, Elementary Text-Book of: An Abridg-
ment of the Text-Book of Magnetism and Electricity, with 143

Diagrams and numerous Questions. 38. 6d.
"Plain and intelligible. It is a capital example of what a good Text-Book should

be.'*

—

Educationnl Netvs.
""We can heartily recommend it to all who need a Text-Book."—Z;/ceM/n.
"Leaves little to be desired."

—

Educatiotial Times.
"Another of his excellent Text-Books."—iVrtfMre.

THE TUTORIAL PHYSICS.

With 424 Diagrams and numerous Calculations.

By E. Catchpool, B.Sc. Lond., First Class Honourman.

I. Sound, Text-Book of. Second Edition. 3s. 6d. .

By R. W. Stewaet, D.Sc. Lond.

II. Heat, Text-Book of. Second Edition. 3s. 6d.

III. Light, Text-Book of. Second Edition. 3s. 6d.

IV. Magnetism and Electricity, Text-Book of Second Edition. 5s. 6d.
" Cannot fail to bo appreciated by all engaged in science teaching.'

—

Publishers'
Circnlar.
"Clear, concise, well-arranged and well-illustrated, and, as far as we have tested,

accurate."

—

Journal of Education.
"Distinguished by accurate scientific knowledge .and lucid explanations."

—

Educational Times.
"The principles of the subject are clearly set forth, and are exemplified by care-

fully chosen examples."

—

Oxford Magazine.
"The diagrams are neat and accurate, the printing excellent, and the arrangement

of the matter clear and precise."

—

Practical Teacher.
" Thoroughly well done."

—

Schoolmaster.
"The author has been very successful in making portions of the work not

ordinarily regarded as elementary appear to be so by his simple exposition of
them."

—

Teachers' Monthly.
"A full, philosophical, and decidedly original treatment of this branch of Physics."

{Sound.)—Educational Times.
" The author ^v^ites as a well-informed teacher, and that is equivalent to saying

that he writes clearly and accurately. There are numerous books on acoustics, but
few cover exactly the same ground as this, or are more suitable introductions to a
serious study of the subject." (Sound.)—Nature.
" "Will be found suitable for general use as an introduction to the study of elec-

trical science." [Magnetism ^ Electricity.)—Iron.
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Directories*
Matriculation Directory, with Full Answers to the Examination

Papers. {No. XX. will be published during the fortnight following
the Exmninaton of June 1896.) Nos. VI., VII., IX., X , XI ,

XII., XIII., XIV., XV., XVI., XVII., XVIII. 2s. each, net.

No. XIX. Is. net.

Intermediate Arts Directory, with Full Answers to the Examination
Papers (except in Special Subjects for the Year). No. II. (1889)
to No. VI. (1893), 2s. 6d. each, net.

Inter. Science and Prelim. Sci. Directory, with Full Answers to the
Examination Papers. No. I. (1890) to No. IV. (1893), 2s. 6d.
each, net.

B.A. Directory, with Full Answers to the Examination Papers
(except in Special Subjects for the Year.) No. I., 1889; II.,

1890; III., 1891. 2s. 6d. each, net. .No. IV., 1893 (with Full
Answers to the Papers in Latin, Greek, and Pure Mathematics).
2s. 6d. net.

Ube XHntverstt^ Corre9pon&ent
AND

UNIVERSITY CORRESPONDENCE COLLEGE MAGAZINE,
Issued every Saturday. Price Id., by Post 1 Jd. ; Half-yearly

Subscription, 3s. ; Yearly Subscription, 58. 6d.

The Univetisity Correspondent has a wide circulation among-
Grammar and Middle Class Schools, and, as a weekly journal, offers an
excellent medium for Advertisements of Posts VACANT AND WANTED ;

no charge for these is made to Yearly Subscribers.

Leading Features of "The University Correspondent."

1. Fortnightly Prizes of One Guinea.

2. Frequent J^igilance Prizes (One to Three GuinemJ

.

3. Special Prizes (One to Five GuineasJ

.

4. Hints and Answers to Students Reading for London University.

5. Answers to Correspondents on all University Matters.

6. Papers set at London Examinations.

7. Full Solutions to Matriculation Papers.

8. Pass Lists of London University Examinations.

9. Calendar of London University Events.

10. Latest University News.

11. Test Papers (with Answers) for London Matriculation.

12. Articles on Special Subjects for London University Examinations.

13. ..4 Series of Articles on the Universities of the United Kingdom.

14. Reviews of Current Educational Literature.

16. List of Educational Books published during the month.
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